The conditions and assumptions for the Antoine equation?

Click For Summary

Homework Help Overview

The discussion revolves around the Antoine equation, particularly focusing on the conditions and assumptions necessary for its application. Participants are exploring the relationship between the Antoine equation and the Clausius-Clapeyron equation, as well as the implications of certain approximations in their derivations.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to derive the Antoine equation from the Clausius-Clapeyron equation and questioning the validity of certain assumptions, such as the approximation of specific volumes. There are discussions about the implications of neglecting the specific volume of the saturated liquid and how this affects the constants in the Antoine equation.

Discussion Status

Some participants have offered guidance on how to approach the derivation by suggesting to start with the Antoine equation and differentiate it. Others are questioning the assumptions made in the derivation process and exploring the nature of the Antoine equation as an empirical relationship.

Contextual Notes

There is a noted lack of explicit assumptions in the textbook regarding the Antoine equation, leading to questions about necessary conditions for its validity. Participants are also considering the implications of the functional form of ΔH in relation to temperature.

Ortanul
Messages
10
Reaction score
0

Homework Statement


Derive the basic relationship that the Antoine equation represents. Most importantly, explain the underlying condition when the Antoine equation applies and the underlying assumptions for the Antoine equation to be valid.

Homework Equations


Clausius-Clapeyron Equation: dPsat/dT=ΔH/TΔV
Antoine Equation: lnPsat=A-B/(T+C)

The Attempt at a Solution


Assume ΔV=Vgas-Vliq≈Vgas
From the Clausius-Clapeyron Equation, dPsat/dT=ΔH/(T*nRT/P)=ΔH/R * P/T2
Rearrange: dPsat/P=ΔH/R * dT/T2
Perform the integration, lnPsat=A-ΔH/RT=A-B/T, A, B are the constant

I think this should be the basic relationship of the Antoine Equation, even though C is not involved in the equation, as Antoine Equation is an empirical relationship.
However, I don't know what kind of conditions and assumptions I should make before using the Antoine Equation, and they are not explicitly stated in my textbook. Should I consider ΔV=Vgas-Vliq≈Vgas as one of the assumptions?
Any help will be appreciated!
 
Physics news on Phys.org
I doubt it is valid to replace ΔV with V, as you have. That may explain the non-appearance of C.
 
You need to work backwards. Start with the Antoine equation, and take the derivative with respect to T. Then compare you result with what you get from the Clausius-Clapeyron equation. Then you will see how ΔH is related to the constants in the Antoine equation.
 
haruspex said:
I doubt it is valid to replace ΔV with V, as you have. That may explain the non-appearance of C.
A key approximation in the derivation of the Clausius-Clapeyron equation is to neglect the specific volume of the saturated liquid in comparison to the specific volume of the saturated vapor. So ΔV is taken as the specific volume of the saturated vapor V.
 
Chestermiller said:
A key approximation in the derivation of the Clausius-Clapeyron equation is to neglect the specific volume of the saturated liquid in comparison to the specific volume of the saturated vapor. So ΔV is taken as the specific volume of the saturated vapor V.
Chestermiller said:
You need to work backwards. Start with the Antoine equation, and take the derivative with respect to T. Then compare you result with what you get from the Clausius-Clapeyron equation. Then you will see how ΔH is related to the constants in the Antoine equation.
I'll try to derive the equation again later. Thank you for your help!
Apart from that, if Antoine Equation can be fully derived from Clausius-Clapeyron Equation, I wonder why it is a empirical equation as stated on my book. Besides, could you please tell me if there is any other necessary assumption for the Antoine Equation itself apart from the negligible volume of liquid?
 
Ortanul said:
I'll try to derive the equation again later. Thank you for your help!
Apart from that, if Antoine Equation can be fully derived from Clausius-Clapeyron Equation, I wonder why it is a empirical equation as stated on my book. Besides, could you please tell me if there is any other necessary assumption for the Antoine Equation itself apart from the negligible volume of liquid?
The Antoine equation assumes a particular functional form for the effect of temperature T on the heat of vaporization ΔH. You can see what that functional form is by taking the derivative of lnPsat with respect to T, and then setting that equal to the derivative of lnPsat with respect to T from the Clausius-Clapeyron equation. This will give you the functional form they assume for ΔH vs T in the Antoine equation.

Chet
 
  • Like
Likes   Reactions: Ortanul

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K