The indefinite integral and its "argument"

Michael Santos
Messages
29
Reaction score
3

Homework Statement


The indefinite integral $$\int \, $$ and it's argument.
The indefinite integral has a function of e.g ## \cos (x^2) \ ## or ## \ e^{tan (x)} \ ##
If the argument of ## \cos (x^2) \ ## is ## \ x^2 \ ## then the argument of ## \ e^{tan(x)} \ ## is ## \ x \ ## or ## \ tan (x) \ ## ?

Homework Equations

The Attempt at a Solution

 
Physics news on Phys.org
Hi,

Both are examples of the kind ##f\left( g(x)\right)\ ##.

The argument for ##f()##, the cosine function ##\cos()##, is ##x^2##, so ##g(x) = x^2##.

Similarly, the argument for exponentiation ## f() = \exp() \ ## is ##g(x) = \tan(x)##.

The integrand in both cases is ##f##, so you integrate ##\int f(g(x)) \, dx ##
 
  • Like
Likes pasmith
BvU said:
Hi,

Both are examples of the kind ##f\left( g(x)\right)\ ##.

The argument for ##f()##, the cosine function ##\cos()##, is ##x^2##, so ##g(x) = x^2##.

Similarly, the argument for exponentiation ## f() = \exp() \ ## is ##g(x) = \tan(x)##.

The integrand in both cases is ##f##, so you integrate ##\int f(g(x)) \, dx ##
What if both functions are to be integrated
BvU said:
Hi,

Both are examples of the kind ##f\left( g(x)\right)\ ##.

The argument for ##f()##, the cosine function ##\cos()##, is ##x^2##, so ##g(x) = x^2##.

Similarly, the argument for exponentiation ## f() = \exp() \ ## is ##g(x) = \tan(x)##.

The integrand in both cases is ##f##, so you integrate ##\int f(g(x)) \, dx ##
If both functions are to be integrated what is the argument to integrate?
 
Michael Santos said:
What if both functions are to be integrated
? Can you write the form of the integral that you mean ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top