The title could be Solving Fourier Series for e^|x| on the Interval (-1,1)

  • Thread starter Thread starter anoncow
  • Start date Start date
  • Tags Tags
    Series
anoncow
Messages
4
Reaction score
0

Homework Statement



\ f(x) = e^{|x|} with x \in (-1,1) and f(x+2) = f(x) \forall x

Homework Equations

The Attempt at a Solution



Linked solution

What am I meant to do once I get to the last line? (assuming all is right up until then)
 
Last edited:
Physics news on Phys.org
Here is that last line.

$$ 2\int_0^1 e^x \cos(n \pi x)\,dx =
\frac{2}{n \pi} \left[e^x\sin(n \pi x) \right]_0^1 -
\frac{2}{n^2 \pi^2} \left[e^x\cos(n \pi x) \right]_0^1 -
\frac{2}{n^2 \pi^2} \int_0^1 e^x \cos(n \pi x)$$

Treat that integral as an unknown and solve for it and, of course, put in the evaluated limits.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top