Thermal Physics - energy, microstates, and probabilities

Ascendant78
Messages
327
Reaction score
0

Homework Statement


Screen_Shot005.jpg


Homework Equations


Screen_Shot004.jpg


The Attempt at a Solution


The first part I'm not worried about, but the second part is worked out in the "relevant equations" section. Honestly, it looks like more magic than a Harry Potter movie going on there to me. I'm at a loss as to what mathematical method/s are being utilized to get to that answer?
 
Physics news on Phys.org
I'm not sure that I understand your concern. From the equations, you can prove exactly that:

\Omega(E=(r-s) \Delta) = \Omega(E=r \Delta)[\dfrac{r^s}{(N-r)^s}] [\dfrac{ (1-\frac{1}{r}) (1-\frac{2}{r}) ... (1 - \frac{s-1}{r})}{ (1 + \frac{1}{N-r}) (1 + \frac{2}{N-r}) ... (1 + \frac{s}{N-r})}]

Then the only issue is proving that if s \ll r and s \ll (N-r), then the last factor is approximately 1.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top