Time Dependent Current in a Wire

AI Thread Summary
The discussion centers on calculating magnetic flux through a wire using the formula for magnetic field strength. The initial attempt at solving the problem yielded an incorrect answer, prompting questions about the use of integrals. Clarifications were provided regarding the correct interpretation of area elements, emphasizing that dA should account for width rather than length. The distinction between single and double integrals was addressed, with a reminder that triple integrals pertain to volume. Ultimately, the correct approach involves integrating over the appropriate area while ensuring the variables are correctly defined.
Flop880
Messages
4
Reaction score
0

Homework Statement



Problem is attached

Homework Equations



A formula sheet is also attached

The Attempt at a Solution



flux=\intB dA from .31m to .82
B=u I(enclosed)/2(pi)(d)
d=x
dA=dx L
so ∫ (u)(I)(L)dx / 2(pi)(x) from .31m to .82m remember x=d in the pic. My answer is 3.9687e-7 and its wrong

integral came out to be (u)(I)(L)/2pi (ln(.82) - ln(.31))
u=4(pi)e-7
I=4A
 

Attachments

  • Prob.png
    Prob.png
    29.9 KB · Views: 498
  • formula.png
    formula.png
    13.1 KB · Views: 486
Physics news on Phys.org
Flop880 said:

Homework Statement



Problem is attached

Homework Equations



A formula sheet is also attached

The Attempt at a Solution



flux=\intB dA from .31m to .82
That "dA" indicates an area - so why is this not a double integral?

B=u I(enclosed)/2(pi)(d)
d=x
dA=dx L
so ∫ (u)(I)(L)dx / 2(pi)(x) from .31m to .82m remember x=d in the pic. My answer is 3.9687e-7 and its wrong
I don't think you've used the formula correctly or you got confused between two different uses.
$$B=\frac{\mu_0 I}{2\pi d}$$... would be the magnetic field strength a distance d from a long straight wire.

The magnetic flux through area dA at position (x,y) would be ##d\Phi = B(x,y,t)\;dA##
You'd have to integrate over the whole LxW area to find the total flux.
 
I just got the right answer by multiplying by the width, not length. so dA= dx w, since dx is the length that's changing times the width which gives area. What do you mean by double integral? Doesn't that give volume?
 
Well done.

note:
Triple integrals give volume. dV=dx.dy.dz,

dA=W.dx is only true when the thing you are integrating does not vary with y
- which is what you have.
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top