Time of Flight using flight path and radius (Kepler's Equation)

AI Thread Summary
The discussion centers on calculating the time of flight for a lunar probe given escape speed at a specific altitude and flight path angle, with the goal of reaching the moon's vicinity. Key equations include those for escape velocity, true anomaly, and eccentric anomaly, which are essential for determining the probe's trajectory. The probe's eccentricity is calculated based on its periapsis and apoapsis distances, leading to the semi-major axis determination. The final time of flight is computed using the appropriate orbital equations, confirming the answer of 223.2 TU. The conversation highlights the importance of understanding orbital mechanics and the relationship between flight path and time of flight.
into space
Messages
17
Reaction score
0

Homework Statement

A lunar probe is given just escape speed at an altitude of .25 DU and flight path angle 30°. How long will it take the probe to get to the vicinity of the moon (r = 60 DU), disregarding the moon's gravity?

Circular orbit, radius = 1.25 DU
θ = 30°
gravitational parameter = μ = 1 DU^3/TU^2
true anomaly = v
Eccentric Anomaly = E
eccentricity = e
t-to = Time of flight
a = semi-major axis

Homework Equations

Escape velocity = √(2μ/r) = 1.26 DU/TU
tan(θ) = (esin v)/(1 + ecos v)
tan (v/2) = √((1+e)/(1-e))tan(E/2)
t-to = √(a^3/μ)(2k(pi) + (E-esinE) - (Eo - esinEo))
θ(parabolic) = v/2

The Attempt at a Solution


The answer is 223.2TU
I just can't see how flight path relates to time of flight. The second equation in the relevant equations section seems like it would fit for equating flight path and true anomaly but I can't separate the true anomaly variable. I'm not sure if that last equation for a parabolic flight path applies (the orbit is parabolic but I don't know). Any help would be greatly appreciated.
 
Physics news on Phys.org
So I'll post a solution I've been working on:

I'm not sure how to think of flight path, but I assumed the transfer maneuver was like a Hohmann Transfer with 60 DU forming the apoapsis radius:
e = (60-1.25)/(60 + 1.25) = .9592

Now I'm trying to find the semi-major axis from the periapsis radius
Rp = a(1-e)
a = Rp/(1-e) = 1.25/(1-.9592) = 30.625 DU

Assuming the probe reaches the Moon's vicinity at apoapsis radius, E = pi and:
t-to = √(30.625^3)(pi - sin pi) = 532 TU
 
If the probe is given escape speed at some point, it will not have a closed orbit; it'll be parabolic.
 
Okay, some hints.

If you know the radial distance, speed, and flight path angle at some instant then you can determine the specific angular momentum h of the probe. That, in turn, gives you the length of the latus rectum p (since you also know the gravitational parameter μ by assumption). The eccentricity is a given since you know that the probe has escape speed. That means you can write the general equation for the conic orbit radius:

## r = \frac{p}{1 + e cos(\nu)}##

and can solve for the two values of ##\nu## involved (at 1.25DU and 60DU). You should be able to work out the time of flight between those two values of true anomaly.

Extra hint: The parabolic eccentric anomaly will be helpful.
 
Awesome, I got the right answer! Thanks so much, I had completely forgot eccentric anomaly was solved differently depending on the orbit/trajectory.
 
Back
Top