Expanding f(x) in Legendre Polynomials: Applying the Transformation u = x/2

Logarythmic
Messages
277
Reaction score
0
I wish to expand

f(x) = 1 - \frac{x^2}{4} , -2 \leq x \leq 2

in terms of Legendre polynomials.

I know that the transformation

u = \frac{x}{2}

maps the function onto the interval (-1,1), but how do I apply this transformation?

Should I use

g(x) = uf(x)

or maybe

g(x) = f(u(x))

?
 
Physics news on Phys.org
g(x)= f(u(x)). You are basically making a "change of variable".
 
But shouldn't f(2) = g(1)?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top