I Total angular momentum of a translating and rotating pancake

AI Thread Summary
The discussion centers on the calculation of total angular momentum for a translating and rotating body, specifically addressing the confusion around using the center of mass (CM) frame versus the fixed origin. It clarifies that in the CM frame, the CM is treated as the origin, which simplifies the integration of position vectors. The participants debate the interpretation of angular momentum terms and the conditions under which certain terms vanish, emphasizing the distinction between vector results and scalar magnitudes in cross products. The conversation concludes with a query about the feasibility of using two different reference frames simultaneously in calculations. Understanding these concepts is crucial for accurately applying classical mechanics principles.
Rikudo
Messages
120
Reaction score
26
I have read Classical Mechanics book by David Morin, and there are some parts that I do not understand from its derivation.

Note :
## V## and ##v## is respectively the velocity of CM and a particle of the body relative to the fixed origin , while ##v'## is velocity of the particle relative to CM
From this, we can get : $$ v = V + v'$$
Screenshot_2021-08-11-12-04-56-87-1.png
333.png


In the 3rd step, It is written that ## \int r' \times V\, dm ## vanised because the position of CM in CM frame is zero.
But, isn't the position of CM should be calculated relative to the origin? (Since we are calculating the angular momentum relative to the origin, not CM)
 
Physics news on Phys.org
Well, by definition if you are in the CM frame of reference the CM is chosen as the origin of your reference frame. Then also the reference point of the angular momentum is the CM.
 
Rikudo said:
and is respectively the velocity of CM and a particle of the body relative to the fixed origin , while is velocity of the particle relative to CM
it is a very bad phrase
there can not be a velocity of one point relative other point
there can be velocity of a point relative a frame
 
  • Like
Likes vanhees71 and ergospherical
wrobel said:
it is a very bad phrase
there can not be a velocity of one point relative other point
there can be velocity of a point relative a frame
Ah...I see.Thanks for telling me!
vanhees71 said:
Well, by definition if you are in the CM frame of reference the CM is chosen as the origin of your reference frame. Then also the reference point of the angular momentum is the CM.
Alright. So, ##\int V \times r' \,dm ## use CM as its origin point, i suppose?
 
Figure 8.4 says it all imho. ##r'## is the position vector in the frame of reference of CM, so when you calculate those terms (the ones that vanish) it is like you are in the frame of reference of CM, regardless if the whole calculation is done in the frame of reference of another point that is taken as origin , different than CM.
so in a nutshell it is
$$\int \vec{r'} dm=\vec{0}$$
$$\int \vec{r} dm=M\vec{R}$$
 
Last edited:
  • Like
Likes vanhees71
Ok I might not have explained it very well but here is a better (i think) explanation.

From figure 8.4 it is ##\vec{r'}=\vec{r}-\vec{R}## hence integrating both sides we get $$\int\vec{r'}dm=\int\vec{r}dm-\int\vec{R}dm=M\vec{R}-\vec{R}M=0$$
 
  • Like
Likes vanhees71
It's nice to meet you again!
Delta2 said:
Ok I might not have explained it very well but here is a better (i think) explanation.

From figure 8.4 it is ##\vec{r'}=\vec{r}-\vec{R}## hence integrating both sides we get $$\int\vec{r'}dm=\int\vec{r}dm-\int\vec{R}dm=M\vec{R}-\vec{R}M=0$$
But, isn't ##\int V \times r' \,dm = V\int r'\, sin\alpha ## since it is a cross product? (With ##\alpha## is the angle between vector## V ##and vector ##r'##).
Then, to find ##\int r'\, sin\alpha ##, we need to multiple both sides by ##sin \alpha## before integrating it.
$$\int\vec{r'} sin (\alpha)dm=\int\vec{r}sin (\alpha) dm-\int\vec{R}sin (\alpha) dm$$
 
No , you confuse $$\int\vec{V}\times\vec{r'} dm=\vec{V}\times\int\vec{r'}dm$$ with $$\int|\vec{V}\times\vec{r'}|dm=|\vec{V}|\int|\vec{r'}|\sin a dm$$, the first above gives a vector as result(where in the integration opposite vectors cancel out), while the second gives a number greater than zero (where in the integration opposite vectors don't cancel out, because we take their magnitude).
 
  • Like
Likes vanhees71
Delta2 said:
No , you confuse $$\int\vec{V}\times\vec{r'} dm=\vec{V}\times\int\vec{r'}dm$$ with $$\int|\vec{V}\times\vec{r'}|dm=|\vec{V}|\int|\vec{r'}|\sin a dm$$, the first above gives a vector as result(where in the integration opposite vectors cancel out), while the second gives a number greater than zero (where in the integration opposite vectors don't cancel out, because we take their magnitude).
OK
 
Last edited:
  • #10
Delta2 said:
it is like you are in the frame of reference of CM, regardless if the whole calculation is done in the frame of reference of another point that is taken as origin
So, we use the origin and CM frame of reference. but, how is it possible to use two different frames at the same time?
 
Back
Top