Danish_Khatri said:
Both are wonderful explanations for the operation of transistor in saturation mode but since, I am still a beginner I am going to take time to grasp it.
What I am still confused about is the direction of current flow when the transistor is in saturation mode. in active mode, when the collector base junction is reverse biased the direction of conventional current is from collector to base in an npn transistor. However, recalling the operation of diode, the direction of conventional current during forward bias should be from p type to n type side. Does the same thing happen in transistor when it is in saturation mode? if not, how is it possible that current is flowing from n type to p type material and the junction is still forward biased?
To explain how current flows in a reverse biased c-b junction, consider the following. The device is npn. The b-e junction is not biased, and the c-b jcn is reverse biased. Only a small reverse leakage current is present, Ics, aka Ico or Iceo. Ib = 0.
But when the b-e jcn is forward biased, Ib > 0, and holes, h+, move from base to emitter, and electrons, e-, move from emitter
towards the base region. Simple enough. But the base region is intentionally made to be very very thin. Also, the base region has light doping density, with the emitter having heavy doping density.
The h+ from the base recombine in the emitter region or in the depletion zone at the edge. The e- from the emitter incur very little recombination in the base, because nearly all pass right through the base region and continue into the collector where they are "collected". The emitter "emits" electrons towards the base which is forward biased wrt the emitter. But the electric field in the reverse biased c-b jcn points in the same direction as that in the forward biased b-e jcn. An e- entering the base from the emitter encounters a strong attractive force yanking it into the collector before it has a chance to recombine with a hole in the base.
Although the c-b jcn is reverse biased it conducts a lot of current. This is because the carriers, e- here, are not provided by the collector region, but by the emitter region. The collector collects the e- that the emitter emitted a moment ago. Outside charge carriers are being injected into the collector. Thus the equation of transistor action is:
Ic = alpha*Ie.
Transistor action occurs because the base is so thin and lightly doped, that charges get swept into the collector before they have a chance to recombine in the base. A good signal level bjt has an alpha value of around 0.98 to 0.998, and a power bjt around 0.95 to 0.98, sometimes as low as 0.90.
In a diode, the n & p regions provide all the charge carriers. So a reverse biased jcn has low current since carriers are in short supply. But in a reversed c-b jcn in a bjt, the b-e jcn is forward biased. Charges carriers are abundent in the base & emitter. But the e- emitted from the emitter pass through the base being so thin, and get collected by the collector due to the electric field. In a nutshell that is transistor action. One more point is worth mentioning. "Current" is merely charge motion. In a bjt, charges move through 1 region, cross a junction, and then move through another region. Thus "collector current" is charge motion, most of which consists of charge carriers injected into the collector from a different location. So e- moving through the emitter region, constitute emitter current Ie. A moment later, nearly all of those e- are moving through the collector region. They now constitute collector current Ic. In other words, what we call "Ic", was only a moment ago called "Ie". Ic=alpha*Ie. Pretty straight forward. Have I helped or made things worse?
Claude