beetle2
- 110
- 0
Homework Statement
Let (X,\theta) be a metric space. Take K > 0and define.
\theta : X \cross X \rightarrow \real_{0}^{+}, (x,y)\rightarrow \frac{K\phi(x,y)}{1+K\phi(x,y)}
Show that (X,\theta) is a metric space.
Homework Equations
can someone please check my triangle inequality?
The Attempt at a Solution
\phi(x,z) \leq \frac{K\phi(x,y)}{1+K\phi(x,y)}
\leq \mid \frac{K\phi(x,y)}{1+K\phi(x,y)}\mid + \mid \frac{K\phi(y,z)}{1+K\phi(y,z)}\mid
= \mid \frac{K\phi(x,y)}{1+K\phi(x,y)} + \frac{K\phi(y,z)}{1+K\phi(y,z)}\mid
=\phi(x,y)+\phi(y,z)