Trig Equation: Solving for Theta with Tangent and Sine Functions

  • Thread starter Thread starter lylos
  • Start date Start date
  • Tags Tags
    Trig
lylos
Messages
77
Reaction score
0

Homework Statement


Tan[60 degrees]=Sin[theta]/(1/3+Cos[theta])


Homework Equations


Trig identities?


The Attempt at a Solution


Tan[60 degrees]=Sin[theta]/(1/3+Cos[theta])
(1/3+Cos[theta])Tan[60 degrees]=Sin[theta]
1/3 Tan[60 degrees]=Sin[theta]-Tan[60 degrees]*Sin[theta]

Now I'm lost...
I can put it in mathematica, and get a solution of 1.34004 Radians or 76.7786 degrees. I just don't know how to solve it!
 
Physics news on Phys.org
lylos said:

The Attempt at a Solution


Tan[60 degrees]=Sin[theta]/(1/3+Cos[theta])
(1/3+Cos[theta])Tan[60 degrees]=Sin[theta]

OK so far.

1/3 Tan[60 degrees]=Sin[theta]-Tan[60 degrees]*Sin[theta]

The line is wrong. Your cosine morphed into a sine, so you'll need to fix that. I would actually back up to the previous line, leaving the cosine and sine on different sides. Look at \sin(\theta) on the right side. Use a Pythagorean identity to express it in terms of \cos(\theta).
 
Thank you, I was able to get to the solution!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top