Integrate x^3/(x^2 - 16) with Trig Substitution

whatlifeforme
Messages
218
Reaction score
0

Homework Statement


evaluate the integral.


Homework Equations


integral (x^3 / (x^2 - 16)


The Attempt at a Solution


x=4sec∅
dx=4sec∅tan∅d∅

1. i substituted those values in, and then split sec^4∅ into sec^2∅ and (1+tan^2∅).
2. integral 16 (1/u) du + integral 16 (u) du.
3. end with:

16 * ln|sqrt(x^2 - 16) / 4| + (1/2) (x^2 - 16)


however, the answer is:

(x^2)/2 + 8 * ln|x^2 - 16| + c.
 
Physics news on Phys.org
okay. i tried u=x^2 -16

1/2 integral (u+16) / u du

1/2 integral (du) + 1/2 integral (16/u) du

1/2(x^2 - 16) + 8 * ln|x^2 - 16|

i get part of the correct answer: (x^2 / 2) + 8 * ln|x^2 - 16| but i have an extra -8 .

correct answer: (x^2 / 2) + 8 * ln|x^2 - 16| + c
my answer: (x^2 / 2) + 8 * ln|x^2 - 16| - 8 + c
 
whatlifeforme said:
okay. i tried u=x^2 -16

1/2 integral (u+16) / u du

1/2 integral (du) + 1/2 integral (16/u) du

1/2(x^2 - 16) + 8 * ln|x^2 - 16|

i get part of the correct answer: (x^2 / 2) + 8 * ln|x^2 - 16| but i have an extra -8 .

correct answer: (x^2 / 2) + 8 * ln|x^2 - 16| + c
my answer: (x^2 / 2) + 8 * ln|x^2 - 16| - 8 + c

If you differentiate both of those you get the same thing. They are both correct. You can absorb the -8 into the +c.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top