- #1
Archimedes II
- 7
- 0
Homework Statement
[itex]\displaystyle \int _0 ^a 4x^2 \sqrt{a^2-x^2} dx[/itex]
Homework Equations
[itex]\cos^2 x =1 - \sin^2 x[/itex]
The Attempt at a Solution
Substuting
Substituting [itex]x=a \sin(\theta)[/itex]
[itex]dx=a\cos( \theta) d\theta[/itex]
x=0
asin[itex]\theta[/itex]=0
sin[itex]\theta[/itex]=0
[itex]\theta[/itex]=0
[itex]\displaystyle \int_{0}^{a} 4x^2 \sqrt{a^2-x^2} dx =[/itex]
[itex]\displaystyle \int_{0}^{\pi/2} 4(a\sin\theta)^2 \sqrt{a^2-(a\sin\theta)^2} a\cos\theta d\theta=[/itex]
[itex]\displaystyle \int_{0}^{\pi/2} 4a^2sin^2\theta \sqrt{a^2-a^2sin^2\theta}a\cos\theta d\theta=[/itex]
[itex]\displaystyle \int_{0}^{\pi/2} 4a^2sin^2\theta a \sqrt{1-sin^2\theta}a\cos\theta d\theta=[/itex]
[itex]\displaystyle \int_{0}^{\pi/2} 4a^2sin^2\theta a cos\theta a\cos\theta d\theta=[/itex]
[itex]\displaystyle 4a^4\int_{0}^{\pi/2} sin \theta cos^2 \theta d\theta=[/itex]
U substitution
[itex]u=cos\theta[/itex]
[itex]-du= sin\theta d\theta[/itex]
[itex]\displaystyle 4a^4\int u^2 du=[/itex]
When I put in the bounds it yields from 1 to 0. What did I do wrong
Last edited: