Slimsta
- 189
- 0
Homework Statement
Let R be the region enclosed by the curves y=6sin2x and y=6 over the segment [ π/2,3π/2]. Find the volume of the solid that is obtained by rotating R about the line y=−1.1.
Homework Equations
<br /> $\displaystyle \Large pi * \int _a^c x((r+yt)^2 - (r+yb)^2)dx$<br />
The Attempt at a Solution
$\displaystyle \Large pi * \int _{pi/2}^{3pi/2} x((-1.1+6)^2 - (-1.1+6sin^2x)^2)dx$
==> $\displaystyle \Large pi * \int _{pi/2}^{3pi/2} 24.01x - (-1.1+6sin^2x)^2 xdx$
==> $\displaystyle \Large pi [* \int _{pi/2}^{3pi/2} 24.01x dx - \int _{pi/2}^{3pi/2} (-1.1+6sin^2x)^2 x dx ]$
==> $\displaystyle \Large pi [* (236.97 + C) - \int _{pi/2}^{3pi/2} (-1.1+6sin^2x)^2 x dx ]$
==> $\displaystyle \Large pi [* (236.97 + C) - \int _{pi/2}^{3pi/2} 36xsin^4x - 13.2xsin^2x + 1.21x dx ]$
==> $\displaystyle \Large pi [* (236.97 + C) - (36\int _{pi/2}^{3pi/2} xsin^4xdx - 13.2\int _{pi/2}^{3pi/2}xsin^2xdx + 1.21\int _{pi/2}^{3pi/2}xdx)]$
is this right so far?
Last edited: