- 2

- 0

**1. Homework Statement**

A triple integral, with the bounds, from outer to inner:

integrate from -1 to 1 with respect to x

integrate from 0 to 1-x^2 with respect to y

integrate from 0 sqrt (y) with respect to z

on the function x^2*y^2*z^2

**2. Homework Equations**

none

**3. The Attempt at a Solution**

I know what kind of a region it is. The region intersects at x^2+z^2=1. However, my attempts at solving this integral lead to a messy, impossible looking integral, and I am fairly sure that this integral requires no more than integration by parts. I've tried changing the bounds, such as letting D=half-circle in xz plane, and let the bounds on y be from z^2 to 0, but they lead to similar problems. What else can I do?....