Triple integral using cylindrical coordinates

jonnyboy
Messages
18
Reaction score
0

Homework Statement


\int\int_{Q}\int(x^4+2x^2y^2+y^4)dV where Q is the cylindrical solid given by \{(x,y,x)| x^2+y^2 \leq a^2, 0\leqz\leq\frac{1}{\pi}\}

Homework Equations



When I convert to cylindrical I get f(r,\theta,z) = r^4\cos^2\theta + 2r^4\cos^2\theta\sin^2\theta + r^2\sin^2\theta, but I just need the bounds for dr, is it? \int^a_0

The Attempt at a Solution


\int^2\pi_0\int^a_0\int^\frac{1}{\pi}_0 f(r,\theta,z)rdzdrd\theta
*the first integral is supposed to be from 0 to 2pi
 
Last edited:
Physics news on Phys.org
Your expression for f(r,\theta,z) is incorrect. It might help you to realize that f(x,y,z)=x^4+2x^2y^2+y^4=(x^2+y^2)^2...so f(r,\theta,z)=? :wink:

And yes, r goes from 0 to a.
 
Got it, so f(r,\theta,z) = r^4 Much simpler!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top