Two Different Masses on an Uncentered Fulcrum (Torque)

  • Thread starter Thread starter Watagun
  • Start date Start date
  • Tags Tags
    Fulcrum Torque
AI Thread Summary
The discussion revolves around calculating the initial tangential acceleration of two blocks suspended from a rigid rod with an uncentered fulcrum. The user initially summed the torques from both sides and calculated the moment of inertia using the point mass formula. After some algebra, they derived an equation for acceleration but were unsure about the correct radius to use for tangential acceleration. Ultimately, they realized their mistake in the equation setup and corrected it to properly relate angular acceleration to tangential acceleration. The user confirmed they understood the solution after clarifying their approach.
Watagun
Messages
3
Reaction score
0
[Solved] Two Different Masses on an Uncentered Fulcrum (Torque)

Homework Statement



Two blocks each of mass 1.9 kg are suspended from the ends of a rigid weightless rod of length l1 = 1.43 m and l2 = .085 m. The rod is held in the horizontal position shown and then released. Calculate the initial acceleration of the mass attached to l1. Assume up is positive and down is negative.

prob10.gif


Also to clarify, the problem is asking for tangential acceleration

Homework Equations


T = r x F
T = Ia
A = ar
I = mr2





The Attempt at a Solution



First I summed the torque of the two sides
T = L1mg + L2mg = Ia
where mg is the force acting on the mass on each side and L1 and L2 are the radii.

For the moment of Inertia I, I used the point mass formula (I = mr2)
But that would apply for the system, so I added the two moment of Inertia for the two sides
I = mr12 + mr22

Doing some algebra to move the variables around I came up with
g(L1+L2)
----------- = a
(L12 + L22)

Putting in my numbers yielded me

9.8*(1.43+.085)/(1.432+.0852) = a = 7.23 rad/s2

Then after that I would need to divide 7.23 by the radius, r, to get the tangential acceleration. But I'm not sure which r I would use. r = L1? or r = (L1+L2)/2?


Anyway, that's what I came up with. I'm guessing there are a lot of mistakes in here, but I'm not sure what I did right and what I did wrong.

Any help pointing me in the correct direction would be great! :)
 
Last edited:
Physics news on Phys.org
If there's any other information you need from me, let me know so we can work to help me figure this out.
 
Nevermind, I found out the answer. It seems I was pretty close. I needed to make my equation
g(-L1+L2) *L1
--------------- = A (or alpha *r)
(L1^2 + L2^2)

The thing that was throwing me off was multiplying it by L1 instead of dividing it by L1. But I understand now. My original equation solved alpha.
Then by multiplying both sides by L1 you get what I have above on the left is equal to alpha * r (which = tangential acceleration)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top