Two tank mixing problem *simple DE* yet im having a hard time.

hornady
Messages
4
Reaction score
0
nm i got it figured out.
 
Last edited:
Physics news on Phys.org
I think you have set up the equations and matrix correctly. Now find the eigenvalues and eigenvectors as you said, and this will give you the time dependence of the two eigenvectors ( call them a'(t) and b'(t) ), which are linear combinations of a(t) and b(t). Then you can solve for a(t) and b(t) in terms of a'(t) and b'(t), and since you know the time dependence of a'(t) and b'(t), you will have the time dependence of a and b. Does this make sense?
 
Unfortunately phyzguy at this point it does not.

I have solved the eigen/values/vectors and put them in "general form". So i think using these initial conditions for A(0)=75 and B(0)= 0 i will have solved for a'(t) and b'(t).. Is this correct?

<<<is terrible at math and needs a lot of repetition to understand what is going on.

Thanks for your help so far though phyzguy, it seems like i am kind of on the right track.
 
Show me what you found for the eigenvalues and eigenvectors and for the time dependence of the eigenvectors.
 
pm sent
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top