Two traveling waves g(x,t) = Asin(kx-wt) and h(x,t) = Asin(kx+wt+phi)

AI Thread Summary
The discussion revolves around identifying nodes in the superposition of two traveling waves, g(x,t) = Asin(kx-wt) and h(x,t) = Asin(kx+wt+phi). Participants note that the provided figure does not display nodes or antinodes because it does not plot the combined function g+h. To determine the locations of nodes, one must find points where g+h equals zero. The conversation suggests that the original question may be part of a multiple-choice format, prompting further clarification on the question and possible answers. Understanding the conditions for nodes is crucial for solving the problem effectively.
blueberryRhyme
Messages
7
Reaction score
0
Homework Statement
E. At particular values of t when troughs in one wave align with troughs in the other
Relevant Equations
N/A
%
 
Last edited:
Physics news on Phys.org
Where in the figure are there nodes at t1?
Please post your working.
 
Hi haruspex, thank you for yr time to have a look at my question. the Figure doesn’t include nodes/anti nodes.
 
blueberryRhyme said:
Hi haruspex, thank you for yr time to have a look at my question. the Figure doesn’t include nodes/anti nodes.
That's only because the figure doesn't plot g+h. You can easily see where the nodes must be.
 
blueberryRhyme said:
You seem to have completely misunderstood the question.
You have to find a place where g+h is always zero.
 
The "statement" of the problem looks like one of the possible answers to a multiple choice question. If that is true, what is the question and what are the other choices?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top