INFO-MAN said:
Hello Chestermiller.
Entropy and the Second Law of Thermodynamics is not exactly an intuitive concept. While I think your article is basically a good one, it is obviously somewhat limited in scope, and my only critique is that you did not cover some of the most important aspects of entropy.
Thanks INFO_MAN. It's nice to be appreciated.
Yes. You are correct. I deliberately limited the scope. Possibly you misconstrued my objective. It was definitely not to write a treatise on entropy and the 2nd law. I was merely trying to give beginning thermodynamics students who are struggling with the basic concepts the minimum understanding they need just to do their homework. As someone relatively new to Physics Forums, you may not be aware of the kinds of questions we get from novices. Typical of a recurring question is: How come the entropy change is not zero for an irreversible adiabatic process if the
change in entropy is equal to the integral of dq/T and dq = 0? Homework problems frequently involve irreversible adiabatic expansion or compression of an ideal gas in a cylinder with a piston. Students are often asked to determine the final equilibrium state of the system, and the
change in entropy. You can see where, if they were asking questions like the the previous one, how they would have trouble doing a homework problem like this.
My original introduction to the tutorial was somewhat longer than in the present version, and spelled out the objectives more clearly. However, the guidelines that Physics Forums set a goal of about 400 words for the Insight articles, and the present version of my article is well over 1000 words. Here is the introductory text that I cut out:
In this author's judgement, the primary cause of the (students') confusion is the poor manner in which these concepts are taught in textbooks and courses.
The standard approach is to present the chronological development of the subject in a straight line from beginning to end. Although this is the way that the subject had developed historically, it is not necessarily the best way to teach the subject. It is much more important for the students to gain a solid understanding of the material by whatever means possible than to adhere to a totally accurate account of the chronological sequence. Therefore, in the present document, we have created a somewhat fictionalized account of the historical sequence of events in order to minimize the historical discussion, focus more intently on the scientific findings, and make the concepts clearer and less confusing to students.
Another shortcoming of existing developments is that the physical situations they discuss are not specified precisely enough, and the mathematical relationships likewise lack proper constraint on their applicability and limitations (particularly the so-called Clausius Inequality). There is also a lack a concise mathematical statement of the second law of thermodynamics in such a way that it can be confidently applied to practical situations and problem solving. In the present development, we have endeavored to overcome these shortcomings.
I agree that most people have a very hard time grasping entropy and the second law of thermodynamics. But I am not sure I understand why your article keeps referring to reversible processes and adiabatic idealizations. In natural systems, the entropy production rate of every process is always positive (Δ
S > 0) or zero (Δ
S = 0). But only idealized adiabatic (perfectly insulated) and isentropic (frictionless, non-viscous, pressure-volume work only) processes actually have an entropy production rate of zero
. Heat is produced, but not entropy. In nature, this ideal can only be an approximation, because it requires an infinite amount of time and no dissipation.
This is an example of one of those instances I was referring to in which the constraints on the equations is not spelled out clearly enough, and, as a result, confusion can ensue. The situation you are referring to here with the inequality (Δ
S > 0) and equality (Δ
S = 0) applies to the combination of the system and the surroundings, and not just to a closed system. Without this qualification, the student might get the idea that for a closed system, ΔS≥0 always, which is, of course, not the case.
Even though reversible processes are an idealization, there is still a need for beginners to understand them. First of all they provide an important limiting case with which irreversible processes can be compared. In geometry, there is no such thing as a perfect circle, a perfect rectangle, a perfect square, etc., but yet we still study them and apply their concepts in our work and lives. Secondly, some of the processes that occur in nature and especially in industry can approach ideal reversible behavior. Finally, and most importantly, reversible processes are the only vehicle we have for determining the
change in entropy between two thermodynamic equilibrium states of a system or material.
You hardly mention irreversible processes. An irreversible process degrades the performance of a thermodynamic system, and results in entropy production. Thus, irreversible processes have an entropy production rate greater than zero (ΔS > 0), and that is really what the second law is all about (beyond the second law analysis of machines or devices). Every naturally occurring process, whether adiabatic or not, is irreversible (ΔS > 0), since friction and viscosity are always present.
I'm sorry that impression came through to you because that was not my intention. I feel that it is very important for students to understand the distinction between real
irreversible processes paths and ideal
reversible process paths. Irreversible process paths are what really happens. But reversible process paths are what we need to use to get the
change in entropy for a real irreversible process path.
Here is my favorite example of an irreversible thermodynamic process, the Entropy Rate Balance Equation for Control Volumes:
This equation applies to the more general case of an open system for which mass is entering and exiting, and I was trying to keep things simple by restricting the discussion to closed systems. Also, entropy generation can be learned by the struggling students at a later stage.
And here are are a couple of other important things you did not mention about entropy:
1) Entropy is a measure of molecular disorder in a system. According to Kelvin, a pure substance at absolute zero temperature is in perfect order, and its entropy is zero. This is the less commonly known Third Law of Thermodynamics.
2) "
A system will select the path or assemblage of paths out of available paths that minimizes the potential or maximizes the entropy at the fastest rate given the constraints." This is known as the Law of Maximum Entropy Production. "The Law of Maximum Entropy Production thus has deep implications for evolutionary theory, culture theory, macroeconomics, human globalization, and more generally the time-dependent development of the Earth as a ecological planetary system as a whole."
http://www.lawofmaximumentropyproduction.com/
As I said above, I was trying to limit the scope exclusively to what the beginning students needed to understand in order to do their homework.
Chet