The 5V is a DC voltage and it's blocked by capacitors.
It looks like you're calculating the quiescent voltage on the non-inverting terminal of the first opamp. You already did that correctly in post #5. Now you're doing it incorrectly.
Now you're calculating the gain of the opamp for the DC on the "+" terminal. The capacitor C2 prevents the opamp from having any gain (other than unity) for DC because for DC the 10k resistor R4 is not Rin. Rin is the series combination of R4 and C2 and the resistance of C2 for DC is infinite. The resistor R5 connects the "-" terminal to the output for DC so the gain of the opamp for DC is just 1. The voltage at the "-" terminal is the same as the opamp output voltage.
The problem statement wants you to estimate the overall voltage gain. They are referring to the small signal gain:
https://en.wikipedia.org/wiki/Small-signal_model
The AC signal at Vin is at a frequency of around 1 or 2 hertz, but it is a small signal, probably only millivolts.
The incoming small AC signal passes through C9 and R3. Those two components appear to be high pass but their output is loaded by R1 and R12 which changes the frequency determined by the C9 R3 pair.
Also, the small signal which has passed through the C9 R3 pair is decreased in amplitude because of the loading from R1 and R12. Note that for small signal purposes, the 5 volt line is a ground for small signals so that R1 and R12 are effectively in parallel as a load on the C9 R3 pair.
For small signals the series combination of R4 and C2 serves as Rin in the formula for non-inverting gain, but you must calculate the impedance magnitude |Z| of the R4 C2 series connected pair to use in the formula.
The formula also needs a value for Rf. This value will be the impedance magnitude |Z| of the parallel combination of C3 and R5.