Understanding Projection in Finite-Dimensional Inner-Product Spaces

Butelle
Messages
12
Reaction score
0

Homework Statement



Hi - i have fully worked solutions in my notes, but i do not understand this step in the proof. Proposition 3.16. Suppose that W is a subspace of a nite-dimensional inner-product
space V and let v be an alement of V . Then ||v - projW(v)|| <= ||v - w|| for all w is an element of W. Moreover, if
w element of W and ||v - projW(v)|| = ||v - w|| then projW(v) = w.
Proof. If w is an element of W then
||v - projW(v)||^2 + ||v - projW(v)||^2 + || projW(v) - w||^2 (1)
= ||v - projW(v) + projW(v) - w||^2 (by Pythagoras' Theorem) (2)
= ||v - w||^2:

note - projW(v) is the projection of v onto W

I do not really understand how (1) implies (2)? Thanks for ur help!




The Attempt at a Solution

 
Physics news on Phys.org
There is a typo in (1).

||v - projW(v)||^2 + ||v - projW(v)||^2 + || projW(v) - w||^2 (1)

should be

||v - projW(v)||^2 + || projW(v) - w||^2 (1).


Now Pythagoras says if vectors a and b are orthogonal, then

||a||^2 + ||b||^2 = ||a + b||^2.
 
thanks!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top