Understanding the Boltzmann Distribution - Integrating N(E) from 0 to Infinity

AI Thread Summary
Integrating N(E) from 0 to infinity equals 1 because N(E) represents a normalized probability density function, where the area under the curve must equal 1 to reflect the total probability of finding a particle across all energy levels. The amplitude A in the equation N(E) = Aexp(-E/kT) is specifically chosen to ensure this normalization. N(E) is not the absolute number of particles at energy E, but rather a fraction of the total number of particles per unit energy. As the energy range ΔE approaches zero, the sum of particles across all energy levels transitions into an integral, confirming that the total probability is indeed 1. This understanding clarifies the relationship between the distribution function and the concept of total probability in statistical mechanics.
skp524
Messages
3
Reaction score
0
For N(E)=Aexp(-E/kT), I know that N(E) is the no. of particles with a certain energy E,
but why does integrating N(E) from 0 to infinity equal to 1? Although I realize that it means that there is 100% probability to find a particle in this range, I want to know why summing up all no. of particles at all energy levels leading to probability, i.e. 1. Do I have some misunderstanding about this equation?
 
Physics news on Phys.org
skp524 said:
For N(E)=Aexp(-E/kT), I know that N(E) is the no. of particles with a certain energy E,
but why does integrating N(E) from 0 to infinity equal to 1? Although I realize that it means that there is 100% probability to find a particle in this range, I want to know why summing up all no. of particles at all energy levels leading to probability, i.e. 1. Do I have some misunderstanding about this equation?
You are dealing with a normalized distribution function. The amplitude, A, is chosen such that the area under the graph is equal to 1. Can you work out what that amplitude would be?

AM
 
Technically, N(E) is not the absolute total number of particles at an energy E, but is rather the probability-energy density; in other words, the number of particles as a fraction of the of the total number of particles at a certain energy per unit energy. The quantity N(E)ΔE is the number of particles in energy range ΔE as a fraction of the of the total number of particles. So the sum ΣN(E)ΔE is the number of particles at all energies as a fraction of the total number of particles, which must be one. Let the range ΔE become very small and the sum becomes an integral: ∫N(E)dE = 1.
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top