Understanding the Limit of [1 + (1/z)]^z as z Approaches Infinity

  • Thread starter Thread starter weirdobomb
  • Start date Start date
  • Tags Tags
    E^x
weirdobomb
Messages
15
Reaction score
0

Homework Statement


Would you give me a clue as to how, limit as z approaches infinity,
[[1 + (1/z)]^z]^(1/3) = e^(1/3)

Homework Equations


The Attempt at a Solution

 
Physics news on Phys.org
You should know that

$$\lim_{z \rightarrow \infty} \left( 1+\frac{1}{z}\right) ^z =e$$

Your result follows from it
 
is there some sort of proof? or should i take it as it is for now?edit: nevermind, i read e on wikipedia.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top