member 428835
hey pf!
in reading a book on viscous stresses i found the following: \tau_{ij}=2\mu\Big(s_{ij}-\frac{1}{3}s_{kk}\delta_{ij}\Big) where einstein summation is used. now we have s_{ij}=\frac{1}{2}\Big(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}\Big) and then the claim is incompressible flow implies s_{kk}=0. can someone explain why this is so?
im using standard notation, but if i need to clarify let me know.
thaks!
in reading a book on viscous stresses i found the following: \tau_{ij}=2\mu\Big(s_{ij}-\frac{1}{3}s_{kk}\delta_{ij}\Big) where einstein summation is used. now we have s_{ij}=\frac{1}{2}\Big(\frac{\partial u_i}{\partial x_j}+\frac{\partial u_j}{\partial x_i}\Big) and then the claim is incompressible flow implies s_{kk}=0. can someone explain why this is so?
im using standard notation, but if i need to clarify let me know.
thaks!