jdcasey9
- 25
- 0
Homework Statement
Prove that f:(M,d) -> (N,p) is uniformly continuous if and only if p(f(xn), f(yn)) -> 0 for any pair of sequences (xn) and (yn) in M satisfying d(xn, yn) -> 0.
Homework Equations
The Attempt at a Solution
First, let f:(M,d)->(N,p) be uniformly continuous.
Let \epsilon=2\delta.
lf(xn)-f(yn)l \leq lf(xn)-xnl + lxn-f(yn)l \leq lf(xn)-xnl + lxn-ynl + lyn-f(yn)l < \delta + 0 + \delta= 2\delta =\epsilon
(because f is uniformly continuous)
Therefore, p(f(xn), f(yn))->0.
Second, let p(f(xn), f(yn)) -> 0 for (xn), (yn) in M such that d(xn, yn) ->0.
We can do this nearly the same way, except at the end we say:
lf(xn)-f(yn)l \leq lf(xn)-xnl + lxn-ynl + lyn-f(yn)l -> 0 so it must be uniformly continuous.