Use Lagrange multipliers to find the eigenvalues and eigenvectors of a matrix

Click For Summary
SUMMARY

The discussion focuses on using Lagrange multipliers to find the eigenvalues and eigenvectors of the symmetric matrix A = [[2, 4], [4, 8]]. The key function to consider is f(x,y) = (1/2)(A[x,y]) · [x,y], with the gradient ∇f(x,y) = A[x,y]. The extremization is constrained to the unit circle defined by x² + y² = 1, leading to the conclusion that the eigenvalues and eigenvectors can be derived from this constraint. The participants clarify that while eigenvectors can exist outside the unit circle, they are scalar multiples of those on the unit circle.

PREREQUISITES
  • Understanding of Lagrange multipliers in optimization
  • Familiarity with eigenvalues and eigenvectors
  • Knowledge of symmetric matrices and their properties
  • Basic calculus, particularly gradient and optimization techniques
NEXT STEPS
  • Study the application of Lagrange multipliers in constrained optimization problems
  • Learn about the properties of symmetric matrices and their eigenvalues
  • Explore the derivation of eigenvalues and eigenvectors using traditional linear algebra methods
  • Investigate the geometric interpretation of eigenvectors and their significance in transformations
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, optimization techniques, and matrix theory. This discussion is beneficial for anyone looking to deepen their understanding of eigenvalues and eigenvectors through advanced methods.

5hassay
Messages
81
Reaction score
0

Homework Statement



Use Lagrange multipliers to find the eigenvalues and eigenvectors of the matrix

A=\begin{bmatrix}2 & 4\\4 & 8\end{bmatrix}

Homework Equations



...

The Attempt at a Solution



The book deals with this as an exercise. From what I understand, it says to consider the function f(x,y) = \frac{1}{2}(A[x,y]) \cdot [x,y], with the assumption that A is symmetric (which is the case here).

It then asks what the gradient of the function is, which is \nabla f(x,y) = A[x,y].

It then asks to restrict f to the region S=\{[x,y] \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}. Then, it then states that there must exists a vector [x,y] \in S and a real number \lambda \neq 0 such that A[x,y] = \lambda [x,y], and claiming that finding the maxima and minima of f constrained to S will give the eigenvalues and eigenvectors of A.

Why is this true? To be more precise, why do the eigenvalues and eigenvectors only exists in the unit disk? And, how do we know there exists such a \lambda \neq 0 that A[x,y] = \lambda [x,y]? I tried Lagrange multipliers, but I could only verify that A[x,y] = 2 \lambda [x,y].

Thanks.
 
Physics news on Phys.org
5hassay said:

Homework Statement



Use Lagrange multipliers to find the eigenvalues and eigenvectors of the matrix

A=\begin{bmatrix}2 & 4\\4 & 8\end{bmatrix}

Homework Equations



...

The Attempt at a Solution



The book deals with this as an exercise. From what I understand, it says to consider the function f(x,y) = \frac{1}{2}(A[x,y]) \cdot [x,y], with the assumption that A is symmetric (which is the case here).

It then asks what the gradient of the function is, which is \nabla f(x,y) = A[x,y].

It then asks to restrict f to the region S=\{[x,y] \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}. Then, it then states that there must exists a vector [x,y] \in S and a real number \lambda \neq 0 such that A[x,y] = \lambda [x,y], and claiming that finding the maxima and minima of f constrained to S will give the eigenvalues and eigenvectors of A.

Why is this true? To be more precise, why do the eigenvalues and eigenvectors only exists in the unit disk? And, how do we know there exists such a \lambda \neq 0 that A[x,y] = \lambda [x,y]? I tried Lagrange multipliers, but I could only verify that A[x,y] = 2 \lambda [x,y].

Thanks.

The reason this works is that since the matrix is symmetric you know the two eigenvectors are orthogonal. Call them e1 and e2 with eigenvectors λ1 and λ2. And you actually want to extremize on the unit circle x^2+y^2=1 (not the unit disk). A vector on the unit circle is given by v=a*e1+b*e2 where a^2+b^2=1, yes? Now you should be able to compute that A(v).v=λ1*a^2+λ2*b^2. With me so far? Now if λ1>λ2 then clearly the max of A(v).v is where a=1, b=0 and the min is where a=0, b=1. So the extrema of the Lagrange problem will give you the eigenvectors e1 and e2. To solve the lagrange problem try and eliminate x from the equations and look at the equation for y and then eliminate y since it can't be zero and give you an eigenvector. Find possible values of lambda. And sure, there are eigenvectors outside of the unit circle, but they are all multiples of the ones on the unit circle.
 
Last edited:
BTW, this is a bit harder than finding the eigenvalues and eigenvectors the usual way using linear algebra. You might want to try that easier way first so you know what to expect. That's what I did.
 
Last edited:
Dick said:
The reason this works is that since the matrix is symmetric you know the two eigenvectors are orthogonal. Call them e1 and e2 with eigenvectors λ1 and λ2. And you actually want to extremize on the unit circle x^2+y^2=1 (not the unit disk). A vector on the unit circle is given by v=a*e1+b*e2 where a^2+b^2=1, yes? Now you should be able to compute that A(v).v=λ1*a^2+λ2*b^2. With me so far? Now if λ1>λ2 then clearly the max of A(v).v is where a=1, b=0 and the min is where a=0, b=1. So the extrema of the Lagrange problem will give you the eigenvectors e1 and e2. To solve the lagrange problem try and eliminate x from the equations and look at the equation for y and then eliminate y since it can't be zero and give you an eigenvector. Find possible values of lambda. And sure, there are eigenvectors outside of the unit circle, but they are all multiples of the ones on the unit circle.

thanks for the reply.

I still find the concept odd, but it is a bit more clear, thanks. I think I just need time for this to settle in my mind, maybe.

A few questions, though.

One, when we are referring to the eigenvectors as e_1 and e_2, are we referring to them as [1,0] and [0,1], the standard basis vectors of \mathbb{R}^2? If not, then my understanding of equality of (Av) \cdot v = a^2 \lambda_1 + b^2 \lambda_2 goes out the window, as my work for that relied on that.

Since the rest of my questions rely on the eigenvectors being such standard basis vectors, I'll wait for a response.

thanks

Dick said:
BTW, this is a bit harder than finding the eigenvalues and eigenvectors the usual way using linear algebra. You might want to try that easier way first so you know what to expect. That's what I did.

yeah, I agree, haha
 
5hassay said:
thanks for the reply.

I still find the concept odd, but it is a bit more clear, thanks. I think I just need time for this to settle in my mind, maybe.

A few questions, though.

One, when we are referring to the eigenvectors as e_1 and e_2, are we referring to them as [1,0] and [0,1], the standard basis vectors of \mathbb{R}^2? If not, then my understanding of equality of (Av) \cdot v = a^2 \lambda_1 + b^2 \lambda_2 goes out the window, as my work for that relied on that.

Since the rest of my questions rely on the eigenvectors being such standard basis vectors, I'll wait for a response.

No, e1 and e2 aren't the standard basis. But you can select them to be orthonormal eigenvectors of A. They are orthogonal because A is symmetric and you can normalize them so |e1|=|e2|=1. So e1.e1=e2.e2=1 and e1.e2=0.
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
4
Views
2K
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K