Vector calculus identities proof using suffix notation

Click For Summary
SUMMARY

The forum discussion centers on proving the vector calculus identity \(\vec{\nabla}\cdot (\vec{a}\times\vec{b}) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})\). Participants emphasize the use of suffix notation and the Einstein summation convention to simplify the proof. The differentiation product rule is crucial in deriving the identity, and the discussion highlights the importance of understanding the types of quantities involved, particularly when dealing with cross products and divergence. The final proof confirms the identity through systematic component analysis.

PREREQUISITES
  • Understanding of vector calculus identities
  • Familiarity with suffix notation and the Einstein summation convention
  • Knowledge of the differentiation product rule
  • Basic concepts of divergence and curl in vector fields
NEXT STEPS
  • Study the application of the Einstein summation convention in vector calculus
  • Learn about the differentiation product rule in depth
  • Explore additional vector calculus identities and their proofs
  • Practice problems involving divergence and curl of vector fields
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are looking to strengthen their understanding of vector calculus and its applications in various fields.

U.Renko
Messages
56
Reaction score
1
I must become good at this ASAP.

Homework Statement



prove \vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})

Homework Equations


\vec a \times \vec b = \epsilon_{ijk}\vec a_j \vec b_k
\vec\nabla\cdot = \Large\frac{\partial}{\partial x_i}
summation over i

The Attempt at a Solution



I don't know where to start. I'm sure it must involve some product rule.
but I'm not 100% sure whether or not \vec\nabla\cdot(\vec a \times \vec b) = (\vec b \times\vec\nabla\cdot\vec a) + (\vec a \times \vec\nabla\cdot\vec b) (or something resembling it)

...
...Right now I have no decent book with me and searching on the internet has done more harm than good.

If that identity correct I might (probably) be able to do the rest.
 
Physics news on Phys.org
Look at the types of quantities you are using in your attempt at a solution. What type of quantity is ##\nabla\cdot \vec{a}##? Does it make sense to take a cross product of a vector with this quantity?

As for how to prove the necessary assertion. You can always go back and use components! The brute force method is always doable (and it's not so hard for this problem).

For a more elegant method of proof, none immediately come to mind. Perhaps with some more thought, one can find a more elegant proof.
 
  • Like
Likes   Reactions: 1 person
Matterwave said:
Look at the types of quantities you are using in your attempt at a solution. What type of quantity is ##\nabla\cdot \vec{a}##? Does it make sense to take a cross product of a vector with this quantity?

Nope. it doesn't make sense.
what was I thinking...
 
U.Renko said:
Nope. it doesn't make sense.
what was I thinking...

Letting ##\partial_i \equiv \partial / \partial x_i##, we have
\vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \partial_i (\epsilon_{ijk} a_j b_k)<br /> = \epsilon_{ijk} \partial_i (a_j b_k)
(using the Einstein summation convention). Now use the differentiation product rule, and simplify.
 
$$\vec{\nabla}\cdot (\vec{a}\times\vec{b} ) = \vec{b} \cdot(\vec\nabla\times\vec{a}) - \vec{a}\cdot(\vec\nabla\times\vec{b})=(\vec{b} \times\vec\nabla)\cdot\vec{a} - (\vec{a} \times\vec\nabla)\cdot\vec{b}=[\vec{b} \vec\nabla\vec{a}]-[\vec{a} \vec\nabla\vec{b}]$$
are several notations for the same thing

Though I personally like to include the parentheses some people do not. The justification for omitting the parentheses is that only one interpretation is possible. It is silly to make the nonsensical interpretation.

The problem you have is with parity of a permutation. Each switch in order changes the sign.
(123)=-(132)=(312)=-(213)=(231)=-(321)
we see that
$$\vec{b} \cdot(\vec\nabla\times\vec{a})$$
corresponds to (312) and thus has a positive sign
and
$$\vec{a}\cdot(\vec\nabla\times\vec{b})$$
corresponds to (213) and thus has a negative sign
 
Show that $$(1){~~~~~~~~~~~~~~~~~~~~~~~~~}\vec \nabla\cdot(\vec a \times \vec b) = \vec b \cdot (\vec \nabla \times \vec a) - \vec a \cdot (\vec \nabla \times \vec b){~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}$$ Using suffix notation, we get for the left hand side of eq. (1) $$(2){~~~~~~~~~~~~~~~~~~~~~}[~\vec \nabla\cdot(\vec a \times \vec b)~]_i =\begin{cases} \begin{align}&~\partial_i (\vec a \times \vec b)_i = \partial_i (πœ€_{ijk} a_j b_k) = πœ€_{ijk} \partial_i (a_j b_k) \nonumber \\ & {~~~~~} πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~]~\dots\nonumber\end{align} \end{cases}$$For the right hand side of eq. (1), we obtain $$(3){~~~~~~~~~~~~}[~\vec b \cdot (\vec \nabla \times \vec a) - \vec a \cdot (\vec \nabla \times \vec b)~]_i =\begin{cases} \begin{align}& ~b_i ( πœ€_{ijk} \partial_j a_k) - a_i ( πœ€_{ijk} \partial_j b_k) \nonumber \\ &~πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] \nonumber\end{align} \end{cases}$$According to eqs. (1), (2), and (3) $$(4){~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] = πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~]{~~~~~~~~}$$ For the left hand side of eq. (4), we get after summing over ##k##
##{~~~~~~}(5){~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~πœ€_{ij1} [~b_1 (\partial_i a_j) + a_j ( \partial_i b_1)~]\nonumber \\ & + πœ€_{ij2} [~b_2 (\partial_i a_j) + a_j ( \partial_i b_2)~]\nonumber \\ & + πœ€_{ij3} [~b_3 (\partial_i a_j) + a_j ( \partial_i b_3)~] \nonumber\end{align}\end{cases}##
Now ... 1st line of (5) ##j\neq1##, ##j## = 2, 3 ... 2nd line ##j\neq2##, ##j## = 1, 3 ... 3rd line ##j\neq3##, ##j## = 1, 2
##{~~~~~~}(6){~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~πœ€_{i21} [~b_1 (\partial_i a_2) + a_2 ( \partial_i b_1)~] \nonumber \\ &{~~~~~}+ πœ€_{i31} [~b_1 (\partial_i a_3) + a_3 ( \partial_i b_1)\nonumber \\ & + πœ€_{i12} [~b_2 (\partial_i a_1) + a_1 ( \partial_i b_2)~] \nonumber \\ &{~~~~~} + πœ€_{i32} [~b_2 (\partial_i a_3) + a_3 ( \partial_i b_2)~] \nonumber \\ & + πœ€_{i13} [~b_3 (\partial_i a_1) + a_1 ( \partial_i b_3)~] \nonumber \\ &{~~~~~} + πœ€_{i23} [~b_3 (\partial_i a_2) + a_2 ( \partial_i b_3)~] \nonumber\end{align}\end{cases}##
Summing over ##i## as in the preceding, we find that
##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~πœ€_{321} [~b_1 (\partial_3 a_2) + a_2 ( \partial_3 b_1)~] \nonumber \\ &{~~~~~}+ πœ€_{231} [~b_1 (\partial_2 a_3) + a_3 ( \partial_2 b_1)\nonumber \\ & + πœ€_{312} [~b_2 (\partial_3 a_1) + a_1 ( \partial_3 b_2)~] \nonumber \\ &{~~~~~} + πœ€_{132} [~b_2 (\partial_1 a_3) + a_3 ( \partial_1 b_2)~] \nonumber \\ & + πœ€_{213} [~b_3 (\partial_2 a_1) + a_1 ( \partial_2 b_3)~] \nonumber \\ &{~~~~~} + πœ€_{123} [~b_3 (\partial_1 a_2) + a_2 ( \partial_1 b_3)~] \nonumber\end{align}\end{cases}##
Using the fact that ##~πœ€_{ijk} =\begin{cases}\begin{align} &~0~\text {if any index is equal to} \nonumber \\&~\text {any other index}~\dots\nonumber \\ &+1~\text {if}~i ,j, k~\text {form an} \nonumber \\ &~\text {even permutation (cylic}\nonumber \\ &~\text {permutation) of 1, 2, 3}~\dots\nonumber
\\ &-1~\text {if}~i ,j, k~\text {form an odd}\nonumber \\ &~\text {permutation of 1, 2, 3}~\dots\nonumber \end{align}\end{cases}##
##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~(-1) [~b_1 (\partial_3 a_2) + a_2 ( \partial_3 b_1)~] \nonumber \\ &{~~~~~}+ (+1) [~b_1 (\partial_2 a_3) + a_3 ( \partial_2 b_1)~] \nonumber \\ & + (+1) [~b_2 (\partial_3 a_1) + a_1 ( \partial_3 b_2)~] \nonumber \\ &{~~~~~} + (-1) [~b_2 (\partial_1 a_3) + a_3 ( \partial_1 b_2)~] \nonumber \\ & + (-1) [~b_3 (\partial_2 a_1) + a_1 ( \partial_2 b_3)~] \nonumber \\ &{~~~~~} +(+1) [~b_3 (\partial_1 a_2) + a_2 ( \partial_1 b_3)~] \nonumber\end{align}\end{cases}##
##{~~~~~~~~~~~~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~ - b_1 (\partial_3 a_2)^* - a_2 ( \partial_3 b_1){\uparrow\uparrow} \nonumber \\ &{~~~~~}+ b_1 (\partial_2 a_3)^* + a_3 ( \partial_2 b_1){\uparrow\uparrow\uparrow}\nonumber \\ & + b_2 (\partial_3 a_1)^{**} + a_1 ( \partial_3 b_2)^{\uparrow} \nonumber \\ &{~~~~~} - b_2 (\partial_1 a_3)^{**} - a_3 ( \partial_1 b_2){\uparrow\uparrow\uparrow} \nonumber \\ & - b_3 (\partial_2 a_1)^{***} - a_1 ( \partial_2 b_3)^{\uparrow} \nonumber \\ &{~~~~~} + b_3 (\partial_1 a_2)^{***} + a_2 ( \partial_1 b_3)^{\uparrow\uparrow} \nonumber \end{align}\end{cases}##
##{~~~~~~}(7){~~~~~~~~~~}πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] =\begin{cases}\begin{align}& ~b_1 [~(\partial_2 a_3) - (\partial_3 a_2)~] \nonumber \\ &{~~~~~} + b_2 [~(\partial_3 a_1) - (\partial_1 a_3)~] \nonumber \\ & + b_3 [~(\partial_1 a_2) - (\partial_2 a_1)~] \nonumber \\ &{~~~~~}+ a_1 [~( \partial_3 b_2) - (\partial_2 b_3)~] \nonumber \\ & + a_2 [~( \partial_1 b_3) - ( \partial_3 b_1)~] \nonumber \\ &{~~~~~}+ a_3 [~( \partial_2b_1) - ( \partial_1 b_2)~] \nonumber\end{align}\end{cases}##
Going back to the right side of eq. (4), we get after summing over ##k##:
$$πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases}\begin{align}&~πœ€_{ij1} [~b_i (\partial_j a_1)~] - πœ€_{ij1} [~a_i (\partial_j b_1)~]\nonumber \\ &~+ πœ€_{ij2} [~b_i (\partial_j a_2)~] - πœ€_{ij2} [~a_i (\partial_j b_2)~]\nonumber \\ &~+ πœ€_{ij3} [~b_i (\partial_j a_3)~] - πœ€_{ij3} [~a_i (\partial_j b_3)~]\nonumber\end{align}\end{cases}$$ Summing over ##j##:
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases}\begin{align}&~πœ€_{i21} [~b_i (\partial_2 a_1)~] - πœ€_{i21} [~a_i (\partial_2 b_1)~]\nonumber \\ &~+ πœ€_{i31} [~b_i (\partial_3 a_1)~] - πœ€_{i31} [~a_i (\partial_3 b_1)~]\nonumber \\ &~+ πœ€_{i12} [~b_i (\partial_1 a_2)~] - πœ€_{i12} [~a_i (\partial_1 b_2)~]\nonumber \\ &~+ πœ€_{i32} [~b_i (\partial_3 a_2)~] - πœ€_{i32} [~a_i (\partial_3 b_2)~]\nonumber \\ &~+ πœ€_{i13} [~b_i (\partial_1 a_3)~] - πœ€_{i13} [~a_i (\partial_1 b_3)~]\nonumber \\ &~+ πœ€_{i23} [~b_i (\partial_2 a_3)~] - πœ€_{i23} [~a_i (\partial_2 b_3)~]\nonumber\end{align}\end{cases}##
Summing over ##i##:
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases}\begin{align}&~πœ€_{321} [~b_3 (\partial_2 a_1)~] - πœ€_{321} [~a_3 (\partial_2 b_1)~]\nonumber \\ &~+ πœ€_{231} [~b_2 (\partial_3 a_1)~] - πœ€_{231} [~a_2 (\partial_3 b_1)~]\nonumber \\ &~+ πœ€_{312} [~b_3 (\partial_1 a_2)~] - πœ€_{312} [~a_3 (\partial_1 b_2)~]\nonumber \\ &~+ πœ€_{132} [~b_1 (\partial_3 a_2)~] - πœ€_{132} [~a_1 (\partial_3 b_2)~]\nonumber \\ &~+ πœ€_{213} [~b_2 (\partial_1 a_3)~] - πœ€_{213} [~a_2 (\partial_1 b_3)~]\nonumber \\ &~+ πœ€_{123} [~b_1 (\partial_2 a_3)~] - πœ€_{123} [~a_1 (\partial_2 b_3)~]\nonumber\end{align}\end{cases}##
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases} \begin{align}&~(-1) b_3 (\partial_2 a_1) - (-1) a_3 (\partial_2 b_1) \nonumber \\ &~+ (+1) b_2 (\partial_3 a_1) - (+1) a_2 (\partial_3 b_1) \nonumber \\ &~+ (+1) b_3 (\partial_1 a_2) - (+1) a_3 (\partial_1 b_2) \nonumber \\ &~+ (-1) b_1 (\partial_3 a_2) - (-1) a_1 (\partial_3 b_2) \nonumber \\ &~+ (-1) b_2 (\partial_1 a_3) - (-1) a_2 (\partial_1 b_3) \nonumber \\ &~+ (+1) b_1 (\partial_2 a_3) - (+1) a_1 (\partial_2 b_3) \nonumber\end{align}\end{cases}##
##πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases} \begin{align}&~- b_3 (\partial_2 a_1)^{***} + a_3 (\partial_2 b_1)^{\uparrow\uparrow \uparrow} \nonumber \\ &~+ b_2 (\partial_3 a_1)^{**} - a_2 (\partial_3 b_1)^{\uparrow\uparrow} \nonumber \\ &~+ b_3 (\partial_1 a_2)^{***} - a_3 (\partial_1 b_2){\uparrow\uparrow \uparrow} \nonumber \\ &~- b_1 (\partial_3 a_2)^* + a_1 (\partial_3 b_2)^{\uparrow} \nonumber \\ &~- b_2 (\partial_1 a_3)^{**} + a_2 (\partial_1 b_3)^{\uparrow\uparrow} \nonumber \\ &~+ b_1 (\partial_2 a_3)^* - a_1 (\partial_2 b_3)^{\uparrow} \nonumber\end{align}\end{cases}##
##(8){~~~~~}πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~] =\begin{cases} \begin{align}&~b_1 [~(\partial_2 a_3)- (\partial_3 a_2)~] \nonumber \\
&~+ b_2 [~(\partial_3 a_1) - (\partial_1 a_3)~] \nonumber \\
&~+ b_3 [~(\partial_1 a_2) - (\partial_2 a_1)~] \nonumber \\
&~+ a_1 [~(\partial_3 b_2) - (\partial_2 b_3)~] \nonumber \\
&~+ a_2 [~(\partial_1 b_3) - (\partial_3 b_1)~] \nonumber \\ &~+ a_3 [~(\partial_2 b_1) - (\partial_1 b_2)~] \nonumber\end{align}\end{cases}##
Comparing eqs. (7) and (8), we find that $$πœ€_{ijk} [~b_k (\partial_i a_j) + a_j ( \partial_i b_k)~] = πœ€_{ijk} [~b_i (\partial_j a_k)~] - πœ€_{ijk} [~a_i (\partial_j b_k)~]$$ $$ \Rightarrow{~~~~~~~~~}\vec \nabla\cdot(\vec a \times \vec b) = \vec b \cdot (\vec \nabla \times \vec a) - \vec a \cdot (\vec \nabla \times \vec b)$$
 

Similar threads

  • Β· Replies 9 Β·
Replies
9
Views
2K
  • Β· Replies 5 Β·
Replies
5
Views
2K
  • Β· Replies 5 Β·
Replies
5
Views
2K
  • Β· Replies 5 Β·
Replies
5
Views
2K
  • Β· Replies 3 Β·
Replies
3
Views
2K
  • Β· Replies 2 Β·
Replies
2
Views
2K
  • Β· Replies 12 Β·
Replies
12
Views
3K
  • Β· Replies 1 Β·
Replies
1
Views
1K
  • Β· Replies 2 Β·
Replies
2
Views
3K
  • Β· Replies 3 Β·
Replies
3
Views
2K