Velocity of a Sphere Rolling in a Circular Bowl

AI Thread Summary
A solid sphere of mass M and radius a rolls down a circular bowl from a height R, and the problem involves finding the velocity of its center of mass at the bottom. The total energy at the top is converted into translational and rotational kinetic energy at the bottom, leading to the equation E_T = mg(R-a) = (1/2)mv^2 + (7/10)ma^2(v^2/r^2). The incorrect expression for velocity derived was v = √(5g(R-a)/6), but the correct expression is v = √(10(R-a)/7). The confusion arose from double-counting the linear kinetic energy, which was clarified by considering the sphere's motion either as linear speed plus rotation about its center or as rotation about the contact point. Understanding this distinction helped resolve the issue effectively.
CoffeeCrow
Messages
10
Reaction score
0

Homework Statement



A solid sphere of mass M and radius a is released at vertical height y=R and rolls down a circular bowl without slipping, find an expression for the velocity of the sphere's center of mass at the bottom of the bowl.

2. Homework Equations


##I=I_c+Md^2##
I=\frac {2} {5} Ma^2
##U=Mgh##
E_r=\frac {1} {2}I\omega^2
E_t=\frac {1} {2}mv^2

The Attempt at a Solution



The sphere is released from height R, so it's total energy is given by E=mg(R-a) (as the radius of the sphere is non-negligible).
Taking the bottom of the bowl to be the zero of potential energy;


##E_T=mg(R-a)=\frac {1} {2} I\omega^2+\frac {1} {2}mv^2##

At the bottom of the bowl, all gravitational potential energy will have been transformed into translational and rotational kinetic energy.
As the sphere is in rotation around it's contact point, via the parallel axis theorem:
I=I_c+Md^2
## I=\frac {2} {5} Ma^2+Ma^2##
## I=\frac {7} {5} Ma^2 ##


And as ## \omega^2=\frac {v^2} {r^2}, ##

## E_T=mg(R-a)=\frac {1} {2}mv^2+\frac {7} {10} ma^2 (\frac {v^2} {r^2}) ##

Following this through I come up with ##v=\sqrt{\frac {5g(R-a)}{6}}##

Rather than the (correct), ##v=\sqrt{\frac {10(R-a)}{7}}##

I know if I only count the rotational kinetic energy I end up with this expression, but I don't understand why I wouldn't also count the translational kinetic energy?
 
Last edited:
Physics news on Phys.org
Sorry, I accidentally hit enter half way through writing this
 
You've effectively counted the linear KE twice. Either take the sphere's motion as a linear horizontal speed of its mass centre, plus a rotation about the mass centre, or take it as a rotation about the point of contact with the bowl.
 
  • Like
Likes CoffeeCrow
Thank you so much! I think I understand a lot better now (that was a lot more painless than expected).
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top