UrbanXrisis
- 1,192
- 1
I am to show that neither of the two wave functions \psi_1 (x,t) = M_1 e^{kx-\omega t} and \psi_2 (x,t) = M_2 e^{i(kx-\omega t)} solve the de Broglie form of Schr. Eqn:
-\frac{\hbar ^2}{2m} \frac{\partial ^2 \psi}{\partial x^2}=i \hbar \frac{\partial \psi}{\partial t}
for the first wave, i got:
-\frac{\hbar ^2}{2m} M_1 k^2 e^{kx-wt}=-i \omega \hbar M_1 e^{kx-\omega t}
for the second wave, i got:
\frac{\hbar ^2}{2m} M_2 k^2 e^{i(kx-\omega t)}= \omega \hbar M_2 e^{i(kx-\omega t)}
i was just wondering if I did these differentiation correct.
-\frac{\hbar ^2}{2m} \frac{\partial ^2 \psi}{\partial x^2}=i \hbar \frac{\partial \psi}{\partial t}
for the first wave, i got:
-\frac{\hbar ^2}{2m} M_1 k^2 e^{kx-wt}=-i \omega \hbar M_1 e^{kx-\omega t}
for the second wave, i got:
\frac{\hbar ^2}{2m} M_2 k^2 e^{i(kx-\omega t)}= \omega \hbar M_2 e^{i(kx-\omega t)}
i was just wondering if I did these differentiation correct.