Wave Equation for Second Sound in Superfluid He-4

Astrofiend
Messages
36
Reaction score
0
I am trying to derive the wave equation for 'Second Sound in superfluid Helium-4 using the basic tenets of the two-fluid model. I am following the derivation in a book which has intermediate steps along the way - I am trying to fill in the gaps. I am almost there - there is only one step that I cannot do:

I cannot get from:

(dVn/dt) - (dVs/dt) = (-p/pn).S.grad(T) ... (1)

to

(pn/ps).d/dt(p.Div(Vn)) = -p.S.Laplacian(T) ... (2)

where S = entropy, T = temperature, ps = density of superfluid component, pn = density of normal component, p = pn + ps = overall density of helium, Div = divergence operation, grad = grad operation, Laplacian = Laplacian operator = div(grad(_)), Vn = velocity of normal component of Helium, Vs = velocity of superfluid component of Helium.

The book says to take the divergence (Del) of both sides of eqn 1, and then use eqn 3 below to 'replace the superfluid velocity in the result', where upon eqn 2 apparently pops out after a little wrangling.

Div(j) = -(dp/dt) ... (3)

Where j = pnVn + psVs ...(4)


It doesn't happen for me though!

Setting dp/dt = 0 (a fair approximation in this case) in (3) and subbing in (4), I get:

Div(Vs) = -(pn/ps).Div(Vn) ...(5)

Subbing (5) into (1) after taking the Div of both sides, I get:

d/dt[Div(Vn) + (pn/ps).Div(Vn)] = -(p/pn).S.Laplacian(T) ... (6)

I can't work out how to go further or whether I've committed some mathematical howler! I need to get (6) to look like (2), unless I've stuffed up in arriving at (6)...

Any help would be much appreciated!
 
Physics news on Phys.org
You're almost there;

\vec{\nabla}\cdot\vec{v}_n+\left(\frac{p_n}{p_s}\right)\vec{\nabla}\cdot\vec{v}_n=\left(1+\frac{p_n}{p_s}\right)\vec{\nabla}\cdot\vec{v}_n

And

1+\frac{p_n}{p_s}=\frac{p_s+p_n}{p_s}=\frac{p}{p_s}
 
Champion - I appreciate it a great deal - that has been driving me bloody well nuts!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top