Wave function of a simple harmonic oscillator

noblegas
Messages
266
Reaction score
0

Homework Statement


The ground state wave function of a one-dimensional simple harmonic oscillator is

\varphi_0(x) \propto e^(-x^2/x_0^2), where x_0 is a constant. Given that the wave function of this system at a fixed instant of time is \phi\phi \propto e^(-x^2/y^2) where y is another constant., find the probablity, that if the energy is measured , the system will be in the ground state


Homework Equations





The Attempt at a Solution



dP=|\varphi_0|^2 dx

According to my book(Peebles) , =|\varphi_0|^2=|\phi_0|^2;, so therefore dP=|\phi_0|^2 dx?
 
Physics news on Phys.org
anyone still not understand my question?
 
hello noble,
i'm wondering if you take the integral of your state function from 0 to infinity then divide that result the integral of your ground state function from 0-infinity will you get a function dependent on energy, whereas you could use an energy sample at any time to give the probability?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top