Wavefunction in a delta potential well

1v1Dota2RightMeow
Messages
75
Reaction score
7

Homework Statement


Using the equations given, show that the wave function for a particle in the periodic delta function potential can be written in the form

##\psi (x) = C[\sin(kx) + e^{-iKa}\sin k(a-x)], \quad 0 \leq x \leq a##

Homework Equations


Given equations:

##\psi (x) =A\sin(kx) + B\cos(kx), \quad 0<x<a##
##A\sin(ka) = [e^{iKa} - \cos(ka)]B##

Note that ##k## and ##K## are different constants.

The Attempt at a Solution


I tried a bunch of stuff already but I can't seem to get to the answer.

Attempt 1. I evaluated ##\psi## at ##0## and at ##a## for both the final equation and the general equation and tried to see if I could come to some conclusion based on equating these, but no luck there.

Attempt 2. I tried working backwards and seeing if I could use the sine identity ##\sin(a-b) = \sin(a)\cos(b)-\cos(a)\sin(b)## but it only seems to make things more complicated.

Could someone just give me a hint?
 
Physics news on Phys.org
Try multiplying ##\psi(x)## by ##\frac{\sin ka}{\sin ka}##.
 
vela said:
Try multiplying ##\psi(x)## by ##\frac{\sin ka}{\sin ka}##.
I see 3 ways to do something with what you've suggested. Here is one attempt:

##\psi(x) = \frac{Asin(kx)sin(ka)+Bcos(kx)sin(ka)}{sin(ka)}##
##=Asin(kx) + \frac{B[(1/2)(sin(ka+kx)+sin(ka-kx))]}{sin(ka)}##
##=Asin(kx)+\frac{A}{2(e^{iKa}-cos(ka))}[sin(ka+kx)+sin(ka-kx)]##
##=Asin(kx)+\frac{e^{-iKa}A}{2(1-e^{-iKa}cos(ka))}[sin(ka+kx)+sin(ka-kx)]##

This would almost be great if it weren't for that ##sin(ka+kx)## term. I don't know what to do with it.
 
There's a reason I said to multiply ##\psi## by ##\frac{\sin ka}{\sin ka}## rather than just the last term. See what you can do with the first term.
 
vela said:
There's a reason I said to multiply ##\psi## by ##\frac{\sin ka}{\sin ka}## rather than just the last term. See what you can do with the first term.
I expanded it out to this, but nothing cancels nicely.

##\psi (x) = \frac{A(sin(kx)sin(ka)-cos(kx)cos(ka))}{sin(ka)}+\frac{B((1/2)(sin(kx)cos(ka)+cos(kx)sin(ka)-sin(kx-ka)))}{sin(ka)}##

Should I have gone a different route?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top