What are the simple modes and frequencies for weakly coupled oscillators?

Zanatto
Messages
2
Reaction score
0

Homework Statement


Two simple pendulums os equal length L=1m are connected with spring with a spring constant K=0,05 Mg/L. The pendulums are started by realeasing one of them from a displaced position. The subsequent motion is characterized by an oscillatory energy exchange between the pendulums. What is te period of this transfer?

Homework Equations

The Attempt at a Solution


In this situation, as a pendulum is displaced and the another is static, I suppose that when the amplitude of pendulum 1 is a maximum, the amplitude of pendulum 2 is minimum, because the result is displaying "beat" frequency. That's correct?
 
Physics news on Phys.org
Yes. Why ask ?
 
  • Like
Likes Zanatto
Yes. When the amplitude of one of the pendula is zero, the amplitude of the other is maximal. This follows directly from energy conservation.
 
  • Like
Likes Zanatto
Well, just to get rid of the doubt.

Them, starting from the equation of position, and I found that the maximum values of the amplitude for the pendulum 1 occurs when:

επ(t/T) = nπ ---> t/T = n/ε

The time between maxima is T/ε, inversely proportional to the coupling spring constant.

And for the pendulum 2 when:

επ(t/T) = (2n +1)* π/2 ---> t/T = (2n+1)/2ε

Them, I stuck in here. Can I relate that with period of transfer in the oscillatory energy exchange in some way?
 
Good. So what's this exercise ? In a chapter on differential equations, on Larangian mechanics, a lab instruction preparation perhaps ?

The motion described is asymmetric and one can expect the pendulum that's initially immobile to start swingning too.
There are simple modes possible where there is no transfer; can you guess which ? Wht are their frequencies ?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top