What is the maximum speed the rock can have before the string breaks?

AI Thread Summary
The discussion centers on determining the maximum speed of a rock being whirled in a circular motion by two strings, each capable of withstanding 35 N of tension. The radius of the motion is calculated to be 19.36 cm, and participants explore the relationship between tension, acceleration, and the geometry of the setup. It is clarified that while gravity is neglected, the tension in the upper string must compensate for the rock's weight, leading to different tensions in the two strings. The correct approach involves resolving the components of tension to find the centripetal force required for circular motion. Ultimately, the tension dynamics and the geometry of the system are critical for solving the problem accurately.
nahya
Messages
27
Reaction score
0
The rock is held by two of the same 40 cm strings with ends 70 cm apart and whirled in a circle between them. Neglect gravity.

--

i found the radius of the circular motion to be 19.36cm = 0.1936m.
now the question is "Now what is the maximum speed the rock can have before the string breaks?"

the hint says, "Find the angle between direction of acceleration and the string tensions. Use this to break the tensions into their components."

well... the direction of acceleration is towards the center...
i can get the the net x-force, which is x = 35cos(theta). i know the acceleration is towards the direction of x, but the magnitude is unknown, because the velocity is unknown, right?

or...
i thought of it this way.
both the strings can endure 35N of tension. they are in the opposite direction, so not 70N.
a = F/m = 35/0.57 =~61.40
v = sqrt(ar) =~ sqrt(61.40 * 0.1936) =~ 3.45.

that's incorrect, apparently.
i thought maybe the radius was the original radius, which is 56.40 (from sqrt(40^2 - 35^2)), but that is also incorrect...

i think the second way of thinking is correct, but maybe I'm not finding the right numbers to plug in.
 

Attachments

  • prob.gif
    prob.gif
    884 bytes · Views: 516
Last edited:
Physics news on Phys.org
Both tensions make the same angle (which can be determined from the geometry) with the horizontal. By resolving x- and y components one quickly comes to the conclusion that the tension in the upper string is the larger of the two. So one sets it to 35 N (the tensions in the strings are not the same). This leaves only one unknown - the tension in the lower string, which can therefore be solved (I assume the mass of the rock is given 0.57 kg?).
 
andrevdh said:
By resolving x- and y components one quickly comes to the conclusion that the tension in the upper string is the larger of the two.

why is that so?
wouldn't they have the same tension, as gravity is neglected?
 
Gravity neglected? The stone is not accelerating in the y-direction, so the y-component of the tension in the top string have to cancel the weight of the rock. The y-component of the tension in the bottom string adds to the weight of the rock, so the tension in the top string have to compensate for this too - in short the top string have to suppport the rock ,while the bottom string does not.
 
Last edited:
andrevdh said:
Gravity neglected? The stone is not accelerating in the y-direction, so the y-component of the tension in the top string have to cancel the weight of the rock. The y-component of the tension in the bottom string adds to the weight of the rock, so the tension in the top string have to compensate for this too - in short the top string have to suppport the rock ,while the bottom string does not.
why would i even need to worry about the weight?
since there's no gravitational attraction, weight can be ignored, right?
 
Your problem says, "Neglect gravity", so gravity effects don't come into it. Imagine that you're doing this rotational motion somewhere out in outer space, without gravity effects.
In that case, the tension in both strings will be equal, with 35 N tension in each string.
The x-components of the string tensions will be what supply the centripetal force.
(I'm assuming that the x-direction is contained in the plane of motion)

Fc = 70cos@

and from the geometry, you can work out @.

Now use Newton's 2nd law to equate the centripetal force with the centripetal acceleration.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top