Idoubt
- 170
- 1
I am getting two different answers with two different methods so can someone point out the error?
\int\limits_{-\infty}^{\infty} \frac{1}{x^2}dx = 2 \int\limits_{0}^{\infty} \frac{1}{x^2}dx = - \frac{2}{x} |_{0}^{\infty} = \infty
\int\limits_{-\infty}^{\infty} \frac{1}{x^2}dx = - \frac{1}{x} |_{- \infty}^{\infty} = 0
\int\limits_{-\infty}^{\infty} \frac{1}{x^2}dx = 2 \int\limits_{0}^{\infty} \frac{1}{x^2}dx = - \frac{2}{x} |_{0}^{\infty} = \infty
\int\limits_{-\infty}^{\infty} \frac{1}{x^2}dx = - \frac{1}{x} |_{- \infty}^{\infty} = 0