What are the properties of these three functions?

azatkgz
Messages
182
Reaction score
0
Among the following function,
-one is continuous everywhere,but not differentiable at 0
-one is differentiable,but derivative is discontinuous at 0
-one is differentiable and has continuous derivative

1)f(x) = \left\{\begin{array}{cc}\ln (1 + x^3)\sin\frac {1}{x},x &gt; 0 \\<br /> 0,x\leq0\end{array}\right

2)g(x) = \left\{\begin{array}{cc}\ln^2(1 + x)\sin\frac {1}{x},x &gt; 0 \\<br /> 0,x\leq0\end{array}\right

3)h(x) = \left\{\begin{array}{cc}\ln (1 + \frac {\sin x}{2}),x &gt; 0 \\<br /> x\leq0\end{array}\right

Solution:

1)\lim_{x\rightarrow 0}\frac {\ln (1 + x^3)\sin\frac {1}{x}}{x} = \lim_{x\rightarrow 0}\frac {(x^3 + 0{x^6})\sin\frac {1}{x}}{x} = 0

differentiable

f&#039;(x) = \frac {3x^2\sin\frac {1}{x}}{1 + x^3} - \frac {\cos\frac {1}{x}\ln (1 + x^3)}{x^2}

2)\lim_{x\rightarrow 0}\frac {(x^2 + o(x^4))\sin\frac {1}{x}}{x} = 0 differentiable

g&#039;(x) = \frac {2\ln (1 + x)\sin\frac {1}{x}}{1 + x} - \frac {\cos\frac {1}{x}\ln^2 (1 + x)}{x^2}

3)\lim_{x\rightarrow 0}\frac {(\frac {\sin x}{2} + 0(\sin^2x))\sin\frac {1}{x}}{x} = \lim_{x\rightarrow 0}\sin\frac {1}{x} not differentiable

I couldn't find which function f'(x) or g'(x) is not differentiable at 0,which one continuous.
 
Physics news on Phys.org
This may not be the most analytical method, but try graphing these functions, it becomes easier to see.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top