What Determines the Values of Legendre Polynomials at Zero?

watisphysics
Messages
3
Reaction score
0

Homework Statement


Using the Generating function for Legendre polynomials, show that:
##P_n(0)=\begin{cases}0 & n \ is \ odd\\\frac{(-1)^n (2n)!}{2^{2n} (n!)^2} & n \ is \ even\end{cases}##

Homework Equations


Generating function: ##(1-2xt+t^2)^{-1/2}=\displaystyle\sum\limits_{n=0}^\infty P_n(x) t^n##

The Attempt at a Solution


I put ##x=0## in the generating function and got ##(1+t^2)^{-1/2}=\displaystyle\sum\limits_{n=0}^\infty P_n(0) t^n## Now, I think I should expand ##(1+t^2)^{-1/2}## using the binomial theorem, then I get an expression that's only valid for even values of ##n##, but it's not the expression stated in the question. So, how can I solve this?
 
Physics news on Phys.org
watisphysics said:

Homework Statement


Using the Generating function for Legendre polynomials, show that:
##P_n(0)=\begin{cases}0 & n \ is \ odd\\\frac{(-1)^n (2n)!}{2^{2n} (n!)^2} & n \ is \ even\end{cases}##

Homework Equations


Generating function: ##(1-2xt+t^2)^{-1/2}=\displaystyle\sum\limits_{n=0}^\infty P_n(x) t^n##

The Attempt at a Solution


I put ##x=0## in the generating function and got ##(1+t^2)^{-1/2}=\displaystyle\sum\limits_{n=0}^\infty P_n(0) t^n## Now, I think I should expand ##(1+t^2)^{-1/2}## using the binomial theorem, then I get an expression that's only valid for even values of ##n##, but it's not the expression stated in the question. So, how can I solve this?

So, what does that tell you about ##P_n(0)## for odd ##n##?
 
watisphysics said:

The Attempt at a Solution


I put ##x=0## in the generating function and got ##(1+t^2)^{-1/2}=\displaystyle\sum\limits_{n=0}^\infty P_n(0) t^n## Now, I think I should expand ##(1+t^2)^{-1/2}## using the binomial theorem, then I get an expression that's only valid for even values of ##n##, but it's not the expression stated in the question. So, how can I solve this?
"Valid" isn't the right word here. The expansion only contains terms with even exponents, so what does that tell you about the coefficients of the odd terms?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top