beans73
- 12
- 0
I've been given the following lagrangian:
\mathcal{L}_{eff} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{G}{4}(\bar{\psi}\psi)(\bar{\psi}\psi)
where I have been told that the coefficient G is real and has mass dimension -2.
I will eventually need to derive the feynman rules for this, but I just wanted to ask what exactly it is describing. the first part looks like the lagrangian for a dirac spinor, and i guess would contribute a propagator. what is the second term describing?
\mathcal{L}_{eff} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi - \frac{G}{4}(\bar{\psi}\psi)(\bar{\psi}\psi)
where I have been told that the coefficient G is real and has mass dimension -2.
I will eventually need to derive the feynman rules for this, but I just wanted to ask what exactly it is describing. the first part looks like the lagrangian for a dirac spinor, and i guess would contribute a propagator. what is the second term describing?