What happens to the units of L as n approaches infinity in hypercube volumes?

  • Thread starter Thread starter gmax137
  • Start date Start date
  • Tags Tags
    Volumes
AI Thread Summary
As the dimension n of a hypercube approaches infinity, the volume behavior is contingent on the side length L. If L is less than 1, the volume approaches zero; if L equals 1, the volume remains 1; and if L is greater than 1, the volume tends to infinity. The choice of measurement units for L directly influences the resulting volume calculations, as unit conversions affect the scaling of dimensions. When considering limits, the arbitrary nature of measurement units becomes significant, impacting how volumes are interpreted in higher dimensions. Ultimately, the relationship between units and volume is crucial in understanding hypercube behavior as dimensions increase.
gmax137
Science Advisor
Education Advisor
Messages
3,134
Reaction score
3,620
I am reading Julian Havil’s book Nonplussed, and in one chapter he’s discussing hypercubes, he says that the volume of an n-dimensional cube of side length L is L^n; then he goes on to note that as n-> infinity, the volume goes to zero if L<1; volume goes to 1 if L=1, and volume goes to infinity if L > 1. Ok that makes sense to me until I ask the units of L. I mean if I tell you that the side length is one meter, then 1*1*1*…1 =1 alright. Then I say, “oops, I meant one yard, so L= 0.914 meter” so now as n goes to infinity the volume is zero (0.914 * 0.914 * ...-> 0). I can see everything is OK as long as n is some finite number, because then we can say the volume is XXX (meters^n) which is equal to YYY (yards^n) and the difference is just a units conversion (=(m/y)^n). But what happens to the conversion factor “when n goes to infinity”?
 
Mathematics news on Phys.org
Exercise:

If you have a square of side length L and you scale up lengths by a factor of k, then how does the area get scaled?

That's the issue.

Yes, the limit will depend on what your units are. If this seems strange, you might think of a measurement as telling you how big the ratio of something is with respect to the thing that you decide has a length of 1. So, it is based on an arbitrary choice. Your choice of units of length will determine a choice of units for area, volume, etc, which, in turn, determines how big volumes are, which, in turn, determines what will happen when you take the limit.
 
Here's another way of thinking of it. Take one of the edges of a cube and chop in up into k pieces. Then, chop up the big cubes into little cubes with the corresponding side length. The number of cubes will go to infinity as you go to higher dimensions. That is the case when the length is greater than your chosen unit. If it is less than the units you chose--let's say half as big, you can do the same kind of thing. As the dimension goes to infinity, you will need more and more little cubes to build a cube of unit hypervolume, so the ratio is going to zero.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top