RazerM
- 5
- 0
Homework Statement
1.75 J is required to fire a spherical pellet of radius 8.75 mm at a maximum velocity of 100 m/s
Find appropriate values for the inital pressure and volume and final pressure and volume
Homework Equations
Adiabatic Expansion
P_{1}V_{1}^{\gamma}=P_{2}V_{2}^{\gamma}
\gamma=1.40\qquad P_{2}=10^5\text{ Pa}
W_{\text{total}}=\frac{P_{1}V_{1}-P_{2}V_{2}}{\gamma-1}
<br /> \begin{align*}<br /> W_{\text{total}} &= W_{\text{atm}}-W_{\text{useful}} \\ \frac{P_{1}V_{1}-P_{2}V_{2}}{\gamma-1}&=10^{5}(V_{2}-V_{1})-1.75<br /> \end{align*}<br />
The Attempt at a Solution
<br /> \begin{align*}<br /> V_{2}&=V_{1}\left( \frac{P_{1}}{P_{2}} \right)^{\frac{1}{\gamma}}\\<br /> V_{2}&=V_{1}\left( \frac{P_{1}}{10^{5}} \right)^{\frac{1}{1.4}}\\<br /> \end{align*}<br />
It is then possible to rearrange work equation into
V_{1}\left( [P_{1}+4\cdot 10^{4}]-\left[ 1.4\cdot 10^{5}\left( \frac{P_{1}}{10^{5}} \right)^{\frac{1}{1.4}} \right] \right)=0.7
\text{Then using an arbitary guess for }V_{1}\text{ and an iterative process to find }P_{1}\text{ I found }
<br /> V_{1} = 10^{-5}\text{ m}^{3}
<br /> P_{1} = 420465\text{ Pa}
<br /> V_{2} = 2.79\cdot 10^{-5}\text{ m}^{3}<br />
Giving a ridiculous barrel length of
<br /> \begin{align*}<br /> L &= \frac{V_{2}-V{1}}{\pi r^{2}} \\<br /> L &= 0.0744\text{ m}<br /> \end{align*}<br />
I'm not asking for a full solution; just a hint as to how to find out values that satify the criteria of work and have a reasonably small V_1 so that there can be many shots for say a 0.001m^3 tank