What is the Angle of Impact Between Two Masses Rebounding at a 43° Angle?

  • Thread starter Thread starter bobie
  • Start date Start date
  • Tags Tags
    Angle Impact
AI Thread Summary
The discussion revolves around determining the angle of impact between two colliding balls, where one ball is three times more massive than the other and rebounds at a 43° angle. Participants emphasize the importance of using conservation of momentum and suggest drawing diagrams to visualize the impact and derive equations. There is a debate about whether a direct formula exists for calculating the angle of impact, with a consensus that understanding the physics is more beneficial than memorizing formulas. The conversation highlights the need for clarity on what reference the angle is measured against. Ultimately, the focus remains on deriving the angle through proper analysis rather than relying on pre-existing formulas.
bobie
Gold Member
Messages
720
Reaction score
2

Homework Statement



A ball A hits another ball B 3 times more massive and rebounds at an angle λ = 43°.1... (cosλ =5/√52).

Can anyone determine the angle of impact? is it possible , at all?
 
Last edited:
Physics news on Phys.org
Depends on the context. i.e. what is the angle with respect to?
You'd usually want to use conservation of momentum - which means you need more than one momentum vector.
 
Simon Bridge said:
. what is the angle with respect to?

The angle of impact λ is the angle made by the trajectory of ball A with the line joining the centres of mass of the two balls CA-CB
 
Last edited:
bobie said:
The angle of impact λ is the angle made by the trajectory of ball A with the line joining the centres of mass of the two balls CA-CB
You've already used λ for the rebound angle. Call it something else.
So draw yourself a diagram of the impact, invent symbols as necessary for the masses, velocities and angles, and write down the equations for conservation of momentum in the co-ordinate directions.
 
haruspex said:
draw yourself a diagram of the impact, invent symbols as necessary for the masses, velocities and angles, and write down the equations for conservation of momentum in the co-ordinate directions.
Isn't there a formula to find directly one angle knowing the other one?
It shouldn't be difficult to work one if in principle it is possibel to find it, right?

Thanks for four help
 
Yes there is - however, it is poor practice to do physics by memorizing formulas: there are just too many of them.
It is much better to get into the habit of deriving your formulas from the physics in front of you.

Besides, giving you the formula, in this case, would amount to "doing your homework for you"; which we like to avoid.
 
bobie said:
Isn't there a formula to find directly one angle knowing the other one?
It shouldn't be difficult to work one if in principle it is possibel to find it, right?
That should result from the momentum equations. Write them out, solve them, post how far you get.
 
Simon Bridge said:
Besides, giving you the formula, in this case, would amount to "doing your homework for you"; which we like to avoid.
Hi Simon, it is not homework (no school) , as usual I am speculating. I was just wondering why it is never mentioned.

I'll work out the formula by myself, it shouldn't be difficult.
Thanks
 
Back
Top