You didn't screw-up, I did. My bad, do this rather:
\frac{8}{(u^2-1)^2}=\frac{8}{(u-1)^2(u+1)^2}
and now partial fractions
\frac{8}{(u-1)^2(u+1)^2}=\frac{A}{u-1}+\frac{B}{(u-1)^2}+\frac{C}{u+1}+\frac{D}{(u+1)^2}
cross-multiply to get
8=A(u-1)(u+1)^2+B(u+1)^2+C(u-1)^2(u+1)+D(u-1)^2
plug-in u=1 to get 8=4B or B=2;
plug-in u=-1 to get 8=4D or D=2;
plug-in u=0 to get 8=-A+B+C+D, but B=D=2, so 4=-A+C
plug-in u=2 to get 8=9A+9B+3C+D, but B=D=2, so -12=9A+3C
solving these two equations gives A=-2 and C=2. Finally, we get
\int\frac{8du}{(u-1)^2(u+1)^2}=\int\left(\frac{-2}{u-1}+\frac{2}{(u-1)^2}+\frac{2}{u+1}+\frac{2}{(u+1)^2}\right) du = -2\log |u-1|-\frac{2}{u-1}+2\log |u+1|-\frac{2}{u+1}+C
= 2\log \left| \frac{u+1}{u-1}\right|-\frac{4u}{u^2-1}+C
but u=\sqrt{4x+1} so...