What is the Fermion's mass in this Lagrangian?

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
We have a Lagrangian of the form:
$$

\mathcal{L} = \overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi - g \left( \overline{\psi}_L \psi_R \phi + \overline{\psi}_R \psi_L \phi^* \right) + \mathcal{L}_{\phi} - V(|\phi|^2)

$$
Essentially, what we are studying is spontaneous symmetry breaking. First, we must find the minimum of $$V(|\phi|^2)$$ to determine the vacuum state. We obtain:
$$

\langle \phi \rangle = v = \sqrt{\frac{m^2}{\lambda}}

$$
Now, let's perform the following expansion:
$$

\phi = (v + h(r, t)) e^{-\frac{i \pi(r, t)}{f}}

$$
Now, the question arises: How do we find the mass of the "new particles," ##\pi## and ##h##? This part is straightforward. However, the challenge lies in determining the fermion mass, denoted as ##m_{\psi}##, and its coupling to ##\pi## and ##h##.

I assume that the only terms that matter in answering this question are:

$$

\overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi - g \left( \overline{\psi}_L \psi_R \phi + \overline{\psi}_R \psi_L \phi^* \right)

$$
Now, let's expand this term as follows:
$$

\overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi - g \left( \overline{\psi}_L \psi_R \left( (v + h) e^{i \frac{\pi}{f}} \right) + \overline{\psi}_R \psi_L \left( (v + h) e^{-i \frac{\pi}{f}} \right) \right)

$$
The challenge here is to determine the fermion mass. My idea is to write a Lagrangian equivalent to the Dirac Lagrangian, where the constant ##c## that should appear in the Lagrangian, i.e., ##c \overline{\psi} \psi##, represents the mass. However, I can't find such a term in the Lagrangian we have. To proceed, I first rewrite ##\psi_{L,R}## in terms of ##\psi## itself, resulting in:

$$

- g (v+h) \overline{\psi} \left( \cos\left(\frac{\pi}{f}\right) + i \gamma^5 \sin\left(\frac{\pi}{f}\right) \right) \psi

$$

Next, I expand the trigonometric expressions to obtain:

$$

g (v+h) \overline{\psi} \left( 1 - \frac{1}{2} \left(\frac{\pi}{f}\right)^2 + i \gamma^5 \frac{\pi}{f} \right) \psi

$$
This expansion results in terms such as:

$$

- g v \overline{\psi} \psi - g h \overline{\psi} \psi - \frac{i g v \gamma^5}{f} \overline{\psi} \pi \psi + \frac{g v}{2 f^2} \overline{\psi} \pi \pi \psi + O(\ldots)

$$

So, the fermion mass would be ##g v##, the coupling ##h \psi \overline{\psi}## would be ##g##, and the ##\overline{\psi} \pi \psi## coupling would be ##\frac{i g v \gamma^5}{f}##?
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top