What Is the General Solution to the Dirac Field Theory Equation?

Luca_Mantani
Messages
33
Reaction score
1

Homework Statement


[/B]
This is an excercise that was given by my professor in a previous test:
Consider the equation:
$$
\displaystyle{\not} p
=\gamma^\mu p_\mu= m$$
where the identity matrix has been omitted in the second member.
Find its most general solution.

Homework Equations


The equation is Lorentz invariant, so in another reference frame
$$
\displaystyle{\not} p'
=\gamma^\mu p'_\mu= m$$
holds true.

The Attempt at a Solution


I've got the solution but i can't understand it.
We choose a reference frame that is favorable, that is the one in which ##\vec{p}=0##, so the equation become
$$\gamma^0p_0=m$$.
Let's choose ##\gamma^0## in Dirac standard form:
$$
\gamma^0=\begin{pmatrix}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & -1 & 0\\
0 & 0 & 0 & -1
\end{pmatrix}
$$

At this point I'm ok with all i have written. Now the solution says:
So the equality becomes:
$$(p_0-m)^2=(p_0+m)^2=0$$

How did this happen? I can't understand it, i would have written the matrix equation and notice that for the equation to hold true i have ##p_0=m## and ##p_0=-m## simultaneously, so the equation is impossible.
What do you think?
 
Physics news on Phys.org
Don't forget the difference between p0 the Eigenvalue, and p0 the operator. You need to solve for both the Eigenvalue and the Eigenvector. The value p0=m corresponds to one vector, and the value p0=-m to another. The equation in your part 1 has to be an operator equation, and can't be true without acting on a wave function.
 
DEvens said:
Don't forget the difference between p0 the Eigenvalue, and p0 the operator. You need to solve for both the Eigenvalue and the Eigenvector. The value p0=m corresponds to one vector, and the value p0=-m to another. The equation in your part 1 has to be an operator equation, and can't be true without acting on a wave function.
Mmm, you mean that p0 is not the time component of the 4-momentum but it's the operator ##-i\partial_0## and both members of the equation are applied to a 4-spinor wave function?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top