SpY]
- 63
- 0
Homework Statement
Evaluate the integral
\int\limits_{V=\infty} e^{-r} \left[ \nabla \cdot \frac {\widehat{r}} {r^2} \right] , d^3 x
Homework Equations
Divergence theorem:
\int\limits_{V} \left ( \nabla \cdot A \right ) \, d^3 x<br /> = \oint\limits_{S} A \cdot \, da}<br />
The Attempt at a Solution
I know that I have to apply the div theorem somewhere, but this e^{-r} is confusing and what does it mean if the lower limit V is infinity?
I haven't seen the integral of \frac{1}{e^r} before but I'm kinda guessing
\int \frac{1}{e^r} \, dr <br /> = \frac{1}{e^r} \int \frac{1}{u} \frac{du}{e^r}<br /> = ln(e^r)<br /> = r<br />
where I used a substitution u=e^r and du= e^r dr
Last edited: