What is the maximum volume of a cone?

Karol
Messages
1,380
Reaction score
22

Homework Statement


10.JPG


Homework Equations


First derivative=maxima/minima/vertical tangent/rising/falling
Volume of a cone: ##~\displaystyle V=\frac{\pi}{3}r^2h##

The Attempt at a Solution


$$L=a^2+b^2~\rightarrow b^2=L-a^2$$
$$V=\frac{\pi}{3}a(L-a^2)$$
$$V'=\frac{\pi}{3}(L-3a^2),~V'=0:~a=\sqrt\frac{L}{3}$$
$$V=\frac{\pi}{3}\left[ \sqrt\frac{L}{3}\left( L-\frac{L}{3} \right) \right]$$
The answer should be:
$$V=\frac{2\pi L^3}{9\sqrt{3}}$$
 

Attachments

  • 10.JPG
    10.JPG
    18.9 KB · Views: 762
Physics news on Phys.org
Karol said:

Homework Statement


View attachment 214806

Homework Equations


First derivative=maxima/minima/vertical tangent/rising/falling
Volume of a cone: ##~\displaystyle V=\frac{\pi}{3}r^2h##

The Attempt at a Solution


$$L=a^2+b^2~\rightarrow b^2=L-a^2$$
$$V=\frac{\pi}{3}a(L-a^2)$$
$$V'=\frac{\pi}{3}(L-3a^2),~V'=0:~a=\sqrt\frac{L}{3}$$
$$V=\frac{\pi}{3}\left[ \sqrt\frac{L}{3}\left( L-\frac{L}{3} \right) \right]$$
The answer should be:
$$V=\frac{2\pi L^3}{9\sqrt{3}}$$
If L is hypotenuse then L^2=a^2+b^2
 
  • Like
Likes DoItForYourself
$$L^2=a^2+b^2~\rightarrow b^2=L^2-a^2$$
$$V=\frac{\pi}{3}a(L^2-a^2)$$
$$V'=\frac{\pi}{3}(L^2-3a^2),~V'=0:~a=\frac{L}{\sqrt{3}}$$
$$V=\frac{\pi}{3}\left[ \frac{L}{\sqrt{3}} \left( L^2-\frac{L^2}{3} \right) \right]=\frac{2\pi L^3}{9\sqrt{3}}$$
Thank you Kumar
 
Karol said:
$$L^2=a^2+b^2~\rightarrow b^2=L^2-a^2$$
$$V=\frac{\pi}{3}a(L^2-a^2)$$
$$V'=\frac{\pi}{3}(L^2-3a^2),~V'=0:~a=\frac{L}{\sqrt{3}}$$
$$V=\frac{\pi}{3}\left[ \frac{L}{\sqrt{3}} \left( L^2-\frac{L^2}{3} \right) \right]=\frac{2\pi L^3}{27\sqrt{3}}$$
Almost
Karol said:
$$L^2=a^2+b^2~\rightarrow b^2=L^2-a^2$$
$$V=\frac{\pi}{3}a(L^2-a^2)$$
$$V'=\frac{\pi}{3}(L^2-3a^2),~V'=0:~a=\frac{L}{\sqrt{3}}$$
$$V=\frac{\pi}{3}\left[ \frac{L}{\sqrt{3}} \left( L^2-\frac{L^2}{3} \right) \right]=\frac{2\pi L^3}{27\sqrt{3}}$$
Almost
You have done a mistake in last line
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top