What is the power output needed to bike uphill at a steady speed of 4.5 m/s?

  • Thread starter Thread starter Symstar
  • Start date Start date
  • Tags Tags
    Power
AI Thread Summary
To determine the power output needed for a cyclist to climb a 6.0-degree hill at a steady speed of 4.5 m/s, the cyclist's total mass is considered to be 60 kg. The initial calculation yielded a power output of 280 W based on gravitational force alone. However, it was later clarified that additional forces, such as friction or air resistance, must be accounted for when climbing uphill, which was not included in the initial assessment. This oversight led to the realization that the problem was more complex than it initially appeared. Therefore, the cyclist's actual power output required to maintain speed while climbing would be greater than the initial calculation.
Symstar
Messages
16
Reaction score
0

Homework Statement


A bicyclist coasts down a 6.0 degree hill at a steady speed of 4.5 m/s.
Assuming a total mass of 60 kg (bicycle plus rider), what must be the cyclist's power output to climb the same hill at the same speed?

Homework Equations


Newton's 1st law
P=W/t

The Attempt at a Solution


P=\frac{W}{t}=F \cdot v

Set x-axis along incline...
F-mg\sin\theta=0
F=mg\sin\theta
P=mg\sin\theta*4.5 = 276.6 W

To 2 sigfig = 280 W

Is this correct? I'm being told it is the wrong answer...
 
Physics news on Phys.org
It looks right.
Who told you that is not?
 
The site where I submit my homework =/ I can't find any problem with it either, so I don't know what's up - guess I'll go ask the professor tomorrow. Thanks for checking my work and please let me know if you do think of somewhere I went wrong.
 
Just an update... since the rider coasts down the hill but isn't accelerating, we must assume that there is a retardant force which must also be factored in when going uphill. This is where I went wrong. Kind of a trick question... blah!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top