What is the role of control volume in the Navier-Stokes equations?

AI Thread Summary
The discussion highlights recent advancements in addressing the Navier-Stokes equations, particularly regarding the smoothness problem, where progress has been made but a flaw in the mathematics has been identified. The conversation also explores the concept of control volume versus differential elements, emphasizing the significance of understanding these distinctions in the context of fluid dynamics. Various forms of the Navier-Stokes equations—Lagrangian, Eulerian, differential, and integral—are briefly outlined, illustrating their interconnections. The control volume in the integral approach is defined simply as V, indicating its fundamental role in analyzing fluid behavior. Overall, the dialogue underscores ongoing challenges in finding actual solutions to the Navier-Stokes equations.
verdigris
Messages
118
Reaction score
0
navier-stokes smoothness problem almost solved

Penny Smith has made progress with showing that smooth conditions exist for all time in a domain for the Navier Stokes equations
http://notes.dpdx.net/2006/10/06/penny-smiths-proof-on-the-navier-stokes-equations/

However a flaw was found in the mathematics - hopefully it can be sorted out soon.There's still the problem though of finding actual solutions to the equations!

Thanks for the info on control volume.I was just wondering if in reality there
is a real,if very small size,to the differential element.
 
Last edited by a moderator:
Engineering news on Phys.org
It's not a control volume but a differential element (infinitely small). Imagine a cube with sides that measure, in cartesian coordinates \delta x, \delta y and \delta z.
 
Actually Fred, the NS equations have 4 forms:

Lagrangian (moving frame of reference)
Eulerian (stationary)
..and then...
Differential
Integral

So for example, looking simply at continuity (sorry again for my lack of latex):
Differential Lagrangian:
Dp/Dt + rho*del•V =0
Where D/Dt is the substantial derivative with respect to time

Differential Eulerian:
dp/dt + del•(rho*V) = 0
(note this form is now strongly conservative as all variables are inside of a derivative)

Integral Lagrangian:
D/Dt [Volume Integral] rho dV = 0

Integral Eulerian:
d/dt [Volume Integral] rho dV + [surface integral] rho*V dS = 0

The entire equations can be derived any of the four ways. It's easiest (at least for me) to remember one form, and then how to go from one form to another.

To answer the question, the control volume for an integral approach is simply V, there is no need to know anything else besides that.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top