What is the simplified form of the integral (csc^4 3\theta)(tan^4 3\theta)?

  • Thread starter Thread starter rjs123
  • Start date Start date
  • Tags Tags
    Integral
rjs123
Messages
90
Reaction score
0

Homework Statement



\int\sec^4 3\theta
 
Physics news on Phys.org
Have you tried anything? Hint d/dt(tan(t)) = sec2(t)
 
Hint:

<br /> \sec^{4}{(3 \theta)} = \sec^{2}{(3 \theta)} \, \sec^{2}{(3 \theta)} = <br /> (1 + \tan^{2}{(3 \theta)}) \, \sec^{2}{(3 \,\theta)} <br />

and use the substitution:

<br /> x = \tan{(3 \theta)}<br />
 
thanks guys...i knew it was something simple.

The original problem was:

\int(csc^4 3\theta)(tan^4 3\theta)

simplified this to:

\int\sec^4 3\theta

and now i know how easy the rest was.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top